

QOS COMPOSITON AND DECOMPOSITON MODEL

IN UNIFRAME

A Thesis

Submitted to the Faculty

of

Purdue University

by

Changlin Sun

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2003

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
QoS Composition and Decomposition Model in Uniframe

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Purdue University ,Department of Computer and Information
Sciences,West Lafayette,IN,47907

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

122

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 ii

To Mom and Dad

 iii

ACKNOWLEDGMENTS

I would like to thank all those people who made this thesis possible and an

enjoyable experience for me.

First of all, I wish to express my sincere gratitude to my advisor, Dr. Rajeev Raje,

without whose continuous support and patient guidance this thesis would not be possible.

I would like to thank Dr. Andrew Olson for providing invaluable suggestion and

help whenever I was in need throughout this study.

I would like to thank Dr. Jiangyu Zheng for his valuable time and effort serving as

member of my advisory committee.

I would like to thank my teammate in the UniFrame project. The discussions and

cooperation with them were very important to this work.

I would like to thank the staff of CS department for their cooperation and

assistance during this work.

I gratefully acknowledge the U.S. Department of Defense and the U.S. Office of

Naval Research for supporting this research with their grant under the award number

N00014-01-1-0746

Finally, I would like to express my deepest gratitude to my family for their

endless love and support during my study at IUPUI.

 iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS..………………………….………………………………… iii

LIST OF TABLES…….……………………………………………………………….…ix

LIST OF FIGURES…..…………………………………………………………………...xi

ABSTRACT. …………………………………………………………………………….xiv

1. INTRODUCTION………………………………………………………………………1

1.1 Component-Based Distributed Systems.……………………………………....1

1.1.1 Software Component & Component Models………………………...3

1.1.2 Software Architecture……………………………………………….6

1.1.3 Networking Infrastructure……………………………………………7

1.2 Functional and Non-Functional Requirements ………………………………..9

1.2.1 Functional Requirements…………………………………………….9

1.2.2 Non-Functional Requirements.……………………………………..11

1.3 System Composition and Decomposition.……………………………………12

1.3.1 Composition and Decomposition of Functional Requirements…….13

1.3.2 Composition and Decomposition of Non-Functional

Requirements……………………………………………………….14

1.4 Objectives of This Thesis ……………………………………………………14

1.5 Contributions of This Thesis.…………………………………………………15

1.6 Organization of This Thesis ………………………………………………….15

2. BACKGROUND AND RELATED WORKS.………………………………………..16

2.1 Current Approaches in System Composition and Decomposition.…………..16

2.1.1 Formal Approaches.………………………………………………...16

2.1.1.1 Assumption-Guarantee Approach………………………..16

 v

Page

2.1.1.2 Composition Based on Existential and Universal

Properties.…………………………………………………17

2.1.2 Software Architecture-Based Approaches.………………………...18

2.1.2.1 Scenario-Based Architectural Analysis Method ………...18

2.1.2.2 Attribute-Based Architecture Styles.……………………..18

2.1.2.3 Architecture Tradeoff Analysis Method.………………….19

2.2 Analysis of Non-Functional Requirements at the Early Design Phase………19

2.2.1 Parmenides Framework …………………………………………….19

2.2.2 SPE…………..……………………………………………………...21

2.2.3 PASA.………………………………………………………………23

2.2.4 UCM2LQN.………………………………………………………...24

3. OVERVIEW OF UNIFRAME ……………………………………………………….26

3.1 Meta Component Model.……………………………………………………..26

3.2 Seamless Interoperation of Heterogeneous Software Components…………..27

3.3 Active Component Resource Discovery ……………………………………..27

3.4 QoS Aware System Development.……………………………….…………..29

3.5 Generative System Production ……………………………………………….32

4. SYSTEM COMPOSITION AND DECOMPOSITON RULES...…………………….34

4.1 Introduction………………………………………………………….………..34

4.2 Classification of System Non-Functional Properties.….……………………..34

4.2.1 Static/Dynamic Non-Functional Properties………………………....34

4.2.2 Domain Dependent/Independent Non-Functional Properties...…….35

4.2.3 Compositional/Non-Compositional Non-Functional Properties.…..36

4.2.4 User-Oriented/System-Oriented Non-Functional Properties.....……38

4.3 The Decomposition Rules…..…………………………………………….….38

4.3.1 Domain Independent Decomposition Rules (DIDR)…...…...……...39

4.3.2 Domain Specific Decomposition Rules (DSDR)…...………………40

4.4 The Category of Composition……….……………………………………….43

4.4.1 Property-Preserved Composition……..…………………...………..43

 vi

Page

4.4.2 Property-Non-Preserved Composition...……………..……………..43

4.4.3 Property-Emerging Composition……………………..………….…44

4.5 The Composition Rules…………………………………………………...….44

4.5.1 Domain Independent Composition Rules (DICR)…...……………..44

4.5.1.1 The Minimum Rule……………..………………………..45

4.5.1.2 The Maximum Rule………..……………………………..45

4.5.1.3 The Sum Rule……………..………………………….…..46

4.5.1.4 The Weighted Sum Rule………………..………………...46

4.5.1.5 The Product Rule……..……..……………………………47

4.5.2 Domain Specific Composition Rules (DSCR)…...…………………47

4.6 Summary……………………………………………………………….……..48

5. EFFECT OF INTER-COMPONENT COMMUNICATION PATTERNS ON

SYSTEM COMPOSITION AND DECOMPOSITION……………………….………49

5.1 Introduction……………………………………………………………….….49

5.2 Invocation-Based Communication…………………………………………...49

5.2.1 Asynchronous One-Way Invocation………………………………..50

5.2.2 Synchronous Two-Way Invocation………………………………...50

5.2.3 Asynchronous Two-Way Invocation……………………………….50

5.3 Event-Based Communication………………………………………………...52

5.4 Stream-Based Communication ……………………………………………….54

5.5 The Factors Associated with Individual Communication Patterns…………..55

5.5.1 Transport Protocols…………..……………………………………...55

5.5.2 Component Access Patterns………………………………………..56

5.5.3 Sequence of Component Interactions……………………………….56

5.5.4 Data Type and Data Size…………………………………………...57

5.6 Composition of Communication Patterns…………………………………….57

5.6.1 Composition of the Basic Communication Patterns………………..57

5.6.2 Composition of Communication Patterns in Real Applications……63

 vii

Page

5.7 The Composition Rules of Response Time and Throughput under Different

Communication Patterns……………………………………….……………..68

5.7.1 The Composition Rules of the Communication Pattern No. 2…......68

5.7.1.1 Single Threaded Components.…………………………....68

5.7.1.2 Multi-Threaded Components……………………………..70

5.7.2 The Composition Rules of the Communication Pattern No. 3……..73

5.7.2.1 Single Threaded Components ……………………………73

5.7.2.2 Multi-Threaded Components ……………………………..75

5.7.3 The Composition Rules of the Communication Pattern No. 11…….77

5.7.4 The Composition Rules of the Communication Pattern No. 12…….78

5.7.5 The Composition Rules of the Communication Pattern No. 13…….79

5.7.6 The Composition Rules of the Communication Pattern No. 14…….80

5.7.7 The Composition Rules of the Communication Pattern No. 17……81

5.7.8 The Composition Rules of the Communication Pattern No. 18…….82

5.7.9 The Composition Rules of the Communication Pattern No. 19…….83

5.7.10 The Composition Rules of the Communication Pattern No. 20…...84

5.8 Summary..……………………………………………………………………..85

6. EFFECT OF NETWORKS ON SYSTEM COMPOSITION AND

DECOMPOSITION…………………………………………….……………………...86

6.1 Introduction…………………………………………………………………..86

6.2 Network Component and Its QoS Parameters………………………………..86

6.3 Mapping Application QoS to Network QoS………………………………….88

6.4 Class of Services……………………………………………………………...89

6.4.1 QoS Levels Provided by Networks…………………………………89

6.4.2 Network QoS Requirements Based on Class of Services..…………89

6.4.3 Network QoS Requirements Based on Application Domains……...90

6.5 Specification of Network Component...……………………………….……...92

6.6 Incorporation of Network Component into System Composition and

Decomposition………………………………………………………….…….93

 viii

Page

6.7 Summary……………………………………………………………….……..93

7. EFFECT OF SYSTEM EXECUTION ENVIRONMENT ON SYSTEM

COMPOSITION AND DECOMPOSITION………………………………...………...94

7.1 Introduction…………………………………………………………………...94

7.2 The Hardware Platforms of the Execution Environment……………….……95

7.3 The Security Policy of the Execution Environment………………………….96

7.4 The User Mobility of the Execution Environment…………………………...96

7.5 The System Resources of the Execution Environment………………………96

7.6 Environment Failure...………………………………………………………..98

7.7 Environment-Sensitive Component…………………………………………..98

7.7.1 Components in Resource-Constrained Environment.………………98

7.7.2 Computation Bound Components…….…………………………….99

7.7.3 I/O Bound Components………...…….……………………………..99

7.8 Analysis of the Environment Effect on System Non-Functional

Properties………………………………………………………………...….100

7.9 Summary…..………………………………………………………………...101

8. CONCLUSIONS AND FUTURE WORKS…………………………………..……...102

8.1 Conclusions………………………………………………………………….102

8.2 Future Works.……………………………………………………………….103

 ix

LIST OF TABLES

Table Page

Table 1.1 A Typical Use Case Template………………………………………………….11

Table 5.1 Experiment Results of the Communication Pattern No. 2 with Single Threaded

Components as the Participants…………………………………………………70

Table 5.2 Experiment Results of the Communication Pattern No. 2 with Multi-Threaded

(4 Threads) Components as the Participants…………………………………….72

Table 5.3 Experiment Results of the Communication Pattern No. 2 with Multi-Threaded

(10 Threads) Components as the Participants………………………………….72

Table 5.4 Experiment Results of the Communication Pattern No. 3 with Single Threaded

Components as the Participants…………………………………………………74

Table 5.5 Experiment Results of the Communication Pattern No. 3 with Multi-Threaded

(4 Threads) Components as the Participants…………………………………...76

Table 5.6 Experiment Results of the Communication Pattern No. 3 with Multi-Threaded

(10 Threads) Components as the Participants………………………………….76

Table 5.7 Experiment Results of the Communication Pattern No. 11 with Multi-Threaded

(4 Threads) Components as the Participants…………………………………...77

Table 5.8 Experiment Results of the Communication Pattern No. 12 with Multi-Threaded

(4 Threads) Components as the Participants…………………………………...78

Table 5.9 Experiment Results of the Communication Pattern No. 13 with Multi-Threaded

(4 Threads) Components as the Participants……………………………………79

Table 5.10 Experiment Results of the Communication Pattern No. 14 with Multi -

Threaded (4 Threads) Components as the Participants………………………80

Table 5.11 Experiment Results of the Communication Pattern No. 17 with Multi –

Threaded (4 Threads) Components as the Participants………………………81

 x

Table Page

Table 5.12 Experiment Results of the Communication Pattern No. 18 with Multi –

Threaded (4 Threads) Components as the Participants………………………82

Table 5.13 Experiment Results of the Communication Pattern No. 19 with Multi –

Threaded (4 Threads) Components as the Participants………………………83

Table 5.14 Experiment Results of the Communication Pattern No. 20 with Multi –

Threaded (4 Threads) Components as the Participants………………………84

Table 6.1 Provisional IP QoS Class Definitions and Network Performance Objectives...90

Table 6.2 End-User Performance Expectations – Conversational/Real-Time Services….91

Table 6.3 End-User Performance Expectations – Streaming Services…………………...91

Table 6.4 End-User Performance Expectation – Interactive Services……………………92

 xi

LIST OF FIGURES

Figure Page

Figure 1.1 Traditional Software Life Cycle: Waterfall Model………………………….....2

Figure 1.2 Component-Based Software Life Cycle……………………………………….3

Figure 3.1 URDS Architecture (from [29]).……………………..……………………….29

Figure 4.1 The Bank ATM System……………………………………………………….42

Figure 4.2 The Sequence Diagram of Deposit Money in the ATM System……………...42

Figure 4.3 The Sequence Diagram of Withdraw Money in the ATM System….….…….48

Figure 5.1 The Asynchronous One-Way Invocation-Based Communication Pattern

(Pattern No. 1)………………………………………………………………..51

Figure 5.2 The Synchronous Two-Way Invocation-Based Communication Pattern

(Pattern No. 2)………………………………………………………………...51

Figure 5.3 The Asynchronous (Polling) Two-Way Invocation-Based Communication

Pattern (Pattern No. 3)………………………………………………………..52

Figure 5.4 The Asynchronous (Call Back) Two-Way Invocation-Based Communication

Pattern (Pattern No. 4)………………………………………………………..52

Figure 5.5 The Push Style Event-Based Communication Pattern (Pattern No. 5)...……..53

Figure 5.6 The Pull Style Event-Based Communication Pattern (Pattern No. 6)………...53

Figure 5.7 The Push-and-Pull Style Event-Based Communication Pattern (Pattern No.

7)………………………………………………………………………………53

Figure 5.8 The Pull-and-Push Style Event-Based Communication Pattern (Pattern No.

8)……………………………………………………………………………...54

Figure 5.9 The Stream-Based Communication Pattern (Pattern No. 9)…………………..55

Figure 5.10 A Typical Relationship between the Load, the Response Time and the

Throughput (from [21])……………………………………………………….56

 xii

Figure Page

Figure 5.11 The Sequential Composition of Two One-Way Invocation-Based

Communication Patterns (Pattern No. 10)…………………………………....59

Figure 5.12 The Sequential Composition of Two Synchronous Two-Way Invocation-

Based Communication Patterns (Pattern No. 11)…………………………….59

Figure 5.13 The Sequential Composition of Two Asynchronous (Callback) Two-Way

Invocation-Based Communication Patterns (Pattern No. 12)…...…………...60

Figure 5.14 The Sequential Composition of Synchronous Two-Way Invocation-Based

Communication Pattern and Asynchronous (Callback) Two-Way Invocation-

Based Communication Pattern (Pattern No. 13)……………………………...60

Figure 5.15 The Sequential Composition of Asynchronous (Callback) Two-Way

Invocation-Based Communication Pattern and Synchronous Two-Way

Invocation-Based Communication Pattern (Pattern No. 14)…………………60

Figure 5.16 The Filter-Style Composition of Two Synchronous Two-Way Invocation-

Based Communication Patterns (Pattern No. 15)…………………………….60

Figure 5.17 The Forward Composition of Synchronous Two-Way Invocation-Based

Communication Pattern and Asynchronous One-Way Invocation-Based

Communication Pattern (Pattern No. 16)…………………………………….61

Figure 5.18 The Partial Sequential Composition of Two Synchronous Two-Way

Invocation-Based Communication Patterns (Pattern No. 17)…………………61

Figure 5.19 The Partial Sequential Composition of Two Asynchronous (Callback) Two-

Way Invocation-Based Communication Patterns (Pattern No. 18)…………...61

Figure 5.20 The Partial Sequential Composition of Synchronous Two-Way Invocation-

Based Communication Pattern and Asynchronous (Callback) Two-Way

Invocation-Based Communication Pattern (Pattern No. 19)………………....61

Figure 5.21 The Partial Sequential Composition of Asynchronous (Callback) Two-Way

Invocation-Based Communication Pattern and Synchronous Two-Way

Invocation-Based Communication Pattern (Pattern No. 20)………………….62

Figure 5.22 The Parallel Composition of Two Synchronous Two-Way Invocation-Based

Communication Patterns (Pattern No. 21)……………………………………62

 xiii

Figure Page

Figure 5.23 The Partial Sequential Composition of Two Synchronous Two-Way

Invocation-Based Communication Patterns (Pattern No. 22)………………...62

Figure 5.24 The Partial Sequential Composition of Two Synchronous Two-Way

Invocation-Based Communication Patterns (Pattern No. 23)………………...62

Figure 5.25 The Fault-Tolerant Composition of Two Synchronous Two-Way Invocation-

Based Communication Patterns (Pattern No. 24)……………………………..63

Figure 5.26 The Alternative Composition of Two Synchronous Two-Way Invocation-

Based Communication Patterns (Pattern No. 25)……………………………..63

Figure 5.27 The Web Server Example…………………………………………………...66

Figure 5.28 The Bank ATM Example…………………………………………………....66

Figure 5.29 The Web Proxy Server Example…………………………………………….66

Figure 5.30 The On-Line Music Shop…………………………………………………....67

Figure 5.31 The Real-Time Content-Based Media Access……………………………....67

Figure 6.1 The Network Component in a Distributed System……………………………86

 xiv

ABSTRACT

Changlin Sun. M.S., Purdue University, August 2003. The QoS Composition and

Decomposition Model in UniFrame. Major Professor: Rajeev Raje.

Software systems are increasingly large, complex, heterogeneous, distributed and

pervasive. The component-based software development provides a promising

methodology for developing large-scale, complex software systems. Component-based

software development advocates developing software systems by selecting commercial-

off-the-shelf or in-house software components and assembling them within appropriate

software architectures. This software development methodology promises software reuse

and thus increases development productivity. A major challenge of component-based

software development is the prediction of the system quality attributes in the absence of

implementation details of individual software components. In top-down development, it

is critical to factor the system level quality attributes into individual components, and

thus facilitate the selection of qualified components. In bottom-up development, it is

important to predict the system wide quality attributes based on the quality attributes of

individual components and the way they compose. This thesis proposes an approach for

decomposing and composing quality of service parameters during development of

component-based software systems. The inter-component communication patterns are

identified and their effects on the composition and decomposition of QoS parameters are

studied. The effect of the network and the execution environment on the composition and

decomposition of QoS parameters are preliminarily investigated.

 1

1. INTRODUCTION

1.1 Component-Based Distributed Systems

A shift towards distributed computing systems has occurred in recent years due to

the cheap computing power and a better networking infrastructure. The proliferation of

the World Wide Web and Internet-based technologies and services will make the future

computing happen anywhere, anytime, for any data and on any device. A distributed

system is a collection of autonomous computers linked by a computer network and

supported by software that enables the collection to operate as an integrated facility.

Well-established techniques such as the inter-process communication and the remote

invocation, the naming services, the cryptographic security, the distributed file systems,

the data replication, and the distributed transaction mechanisms provide the run-time

infrastructure supporting today’s distributed systems.

 In developing large scale, complex distributed systems, especially critical

systems, the traditional software development can result in a high development cost, a

low productivity, an unmanageable software quality and create less reliable software

systems. Component-based software development is one of the most promising

approaches available today to overcome these drawbacks. This approach is based on the

idea that software systems can be developed by selecting appropriate off-the-shelf

components and then assembling them with well-defined software architecture. Thus

component-based software development is different from the traditional software

development approach, in which software systems can only be implemented from

scratch. In the component-based software development approach, the commercial off-the-

shelf components can be developed by different suppliers using different languages and

different platforms. System developers browse catalogs of software components from

multiple vendors and assemble complex systems from available building blocks. Many

 2

benefits result from this scheme, including a decreased system development time and

cost, a low component cost due to the amortization of component development costs over

multiple users, availability of robust components due to greater maintenance resources

supported by multiple users of each component, and a wide range of general-purpose and

domain specific components.

Component-based development offers a vision of plug and play software

development. It will likely shift the focus of software engineering from the “specify,

design, and implement” concept toward “select, evaluate, and integrate” [1]. The

traditional waterfall model of software life cycle is shown in Figure 1.1 [2]. The

component-based life cycle is shown in Figure 1.2 [3].

Figure 1.1 Traditional Software Life Cycle: Waterfall Model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

 3

Figure1.2 Component-Based Software Life Cycle

1.1.1 Software Component & Component Model

A software component is a software element that conforms to a component model

and can be independently deployed and is subject to composition by third parties without

modification according to a composition standard [4]. In another words, a software

component is a self-contained unit encapsulating data and logic, a composable unit with

well-defined external interfaces, a configurable unit reused in various contexts and a

packaged and deployable unit. A component can be as small as a single procedure or as

large as an entire application.

The use of the notion of a software component has the following advantages:

1) Reduced time to market: use of software component can improve application

productivity, reduce complexity, and increase reuse of existing code.

2) Programming by assembly (manufacturing) rather than development (engineering):

Component design

Coding

Certification

Marketing

Component selection

System composition

Testing

Maintenance

Component requirement
specification

System QA analysis

Architecture design

Requirement analysis

 4

This can reduce skills requirements, and focus expertise on domain problems and on

improving software quality.

 There are many challenges emerging from the usage of components. These are:

1) Heterogeneity: the heterogeneity widely exists in networks, operating systems, runtime

libraries, and programming languages.

2) Interoperability: components developed with different models (Java, CORBA, .NET)

cannot easily interoperate. Presently, there are no commonly agreed vendor-neutral

models for creating & integrating components.

3) Configurability: providing a flexible and consistent connection between provided

interface with required interface is non trivial in component-based development.

4) Composability: how to reason about the system properties from component properties

is still an unsolved problem.

5) Packaging, deployment, and configuration: this issue is associated with the distribution

and selling of components and installation and configuration of component-based

systems.

 Typically, a component is based on a certain component model. Current and

emerging component models include Java, CORBA, .NET and Web Services. A Java [5]

component is pure Java. It utilizes all the features of Java in a native way. It uses Java

language to describe component services. The communication between Java components

is via Java RMI (Remote Method Invocation). Component discovery is achieved through

the JNDI (Java Naming & Directory Interface). The advantage of a Java component is

that it is platform independent. A Java component can run on any platform as long as

there exists a Java virtual machine on that platform. A Java component is Java specific.

So it is difficult to integrate a Java component with a component written in another

language.

CORBA [6] is a specification for building and deploying distributed components.

Different implementations of CORBA exist. In CORBA, component interfaces are

described using a language called IDL (Interface Definition Language). This allows the

interface definitions in a language independent manner. A mapping exists for compiling

IDL to different languages such as C, C++, and Java. So, the CORBA component is

 5

language independent. Components written in different languages can communicate with

each other within the CORBA model. The communication between two CORBA

components is through IIOP (Internet Inter-ORB Protocol). CORBA uses naming

services or trading services to locate objects and services. CORBA is platform

independent because it presumes a heterogeneous environment. Using IIOP, different

CORBA implementations interoperate with each other to produce a worldwide object

bus.

.Net [7] defines a full platform. It defines a virtual machine (common runtime

environment), which can execute intermediate code called byte code. The byte code is

called intermediate language (IL) that is independent of any platform. .Net components

can be written in any language, such as C++, C#, VB.NET and others, that have tools to

produce the IL byte code. In this sense, a .Net component is also language independent

(at byte code level) and platform independent. .Net does not provide direct support for

distributed objects but does support web services that provide support for distributed

objects.

Web Services [8] is a recent component model that builds on the XML

technology. Web Services are complementary to Java, CORBA, and .Net technologies.

They do not replace them. In Web Services, any service can be described by WSDL

(Web Service Description Language). The communication between components is via

SOAP (Simple Object Access Protocol). In Web Service, the component services are

located using UDDI (Universal Description, Discovery, and Integration). Thus, Web

Services are independent of the programming languages used. Any model can support or

will support Web Service to facilitate an integration. Thus, Web services can provide a

simple way to integrate any model such as Java, CORBA, and .Net. Web Services can be

used to integrate heterogeneous components in two ways: wrapping existing component

as Web Services or use Web Services as “glue” to integrate multiple components.

 6

1.1.2 Software Architecture

 The software architecture is the structure of the components of a program/system,

their interrelationships, and principles and guidelines governing their design and

evolution over time [9]. The software architecture is another promising approach

proposed in response to the growing complexity of software systems and the problems

they attempt to solve. The purpose of software architecture is to reduce costs of

developing applications and to increase the potential for commonality between different

members of a closely related product family. Software architecture provides explicit,

high-level system models and a support for capturing recurring properties of an

application domain. Architectures enable developers to focus on the “big picture” while

developing a system and to adopt a component-based development philosophy as

opposed to always building a system from scratch. Architectures do this by making a

software system’s structure explicit, separating the computations of components from

their interactions in a system, and providing a high-level model of a system that can be

manipulated and analyzed before any changes are effected in an actual implementation.

Software architecture is commonly described in terms of the following basic

elements: components, connectors, configurations, and constraints. In software

architectures, components are normally independently developed and deployed.

Connectors are wires between components. Configurations describe a set of rules about

how components are connected with each other. Constraints describe the functional or

non-functional requirements imposed on components and connectors.

Existing component models are component-centric: they are primarily concerned

with standardizing external component properties—interfaces, packaging, binding

mechanism, inter-component communication protocols, and expectations regarding the

runtime environment. They do not support reasoning about system quality attributes, e.g.,

performance, modifiability, reliability and safety. Instead, an engineer must wait until the

components have been acquired, integrated, and the system as a whole benchmarked, to

determine whether a system meet its quality attribute goals. Software architectures, in

contrast, are system-centric: they focus on specifying systems of communicating black-

box components, analyzing resulting system properties, and generating “glue” code that

 7

binds system components. Component models and software architectures both are crucial

aspects of component-based software development. There are still gaps between these

two domains. Component models alone do not adequately address certain system-wide

aspects of engineering large, complex, distributed software systems. The software

architecture research, on the other hand, typically has not focused on component

development, packaging, and interoperability. These different but complementary

domains indicate an opportunity for an effective marriage of the two areas, where one can

couple the benefits of explicit architectural models with those of component

interoperability models. Such a unified approach would form a solid basis on which a

successful software component marketplace can build.

The architectural issues are important in component-based development. For

example, during component selection, it has to be ensured that the components fit into

already known architectural properties of the application under development. This

compatibility with the selected architecture is especially important because the system

architecture has extreme impact on the non-functional properties of the system. By

conforming to the selected system architecture, the foundation is laid for the composed

system to adhere to the non-functional requirements to the application.

1.1.3 Networking Infrastructure

The systems in the future will be distributed, consists of many components, and

services, and will be highly dependent on networking and information infrastructure [10].

The exponential growth of the Web and other Internet-based systems and services make

it a challenge for distributed system technology to provide flexible and reliable

infrastructures for large-scale systems that meet the demands of developers, users and

service providers.

Today’s new communication networks are converging into a unique network

infrastructure carrying data in the form of voice, video and mission critical applications.

Mobile communication is moving towards multimedia contents. The outcome will be a

 8

new network environment where data, voice and video, fixed and mobile applications

will share the same infrastructure.

With today’s distributed systems from application domains, such as data mining,

e-commerce, and multimedia, which are bandwidth hungry, time sensitive, and mission

critical, new and more demand requirements are continually imposed on the underlying

network infrastructure. The traditional network handles network traffic in a best-effort

way. If network resources are available, then the best effort traffic is delivered, otherwise

the traffic is dropped. Moreover, it can only assure the data delivery without any

guarantee for a minimum data rate or a timed delivery. The new voice, video and

interactive multimedia applications will require the network infrastructure to provide QoS

mechanisms, such as, avoiding network congestion, bandwidth reservation, and traffic

shaping and policing.

In addition to the traditional best effort service, a network can provide

differentiated and guaranteed services. A differentiated service is an intermediate quality

of service level. Different types of traffic can share the same data path across the

network. For example, time-critical applications can compete with less time-depended

applications for the network resources. In the differentiated service framework, some

traffic has higher privileges than the others. Packets entering the network are classified

according to the application to which they belong to or to the service level agreements

with the customer. Then the most important traffic is prioritized following such

classification. Prioritizing some traffic means to give precedence to this traffic in the use

of network resources.

Prioritizing network traffic is not an optimal solution for the quality of service

requirements. It is usually a statistical treatment, not a strict guarantee. During a hard

congestion phase, all traffic, even the most important, might undergo the network

congestion state and reduce the quality of applications. In order to obtain a strict

guarantee of quality of service, a guaranteed service is needed. It is the highest level of

quality of service architecture where there is an absolute end-to-end reservation of

network resources for a specific traffic type. In the guaranteed service framework,

incoming traffic is classified and divided into different traffic flows with different priority

 9

levels to meet the corresponding network application requirements. Some of these flows

can receive guaranteed resources like a definite percentage of the available bandwidth on

the transmitting channel. The guaranteed service makes it possible to provide a service

that guarantees both delay and bandwidth of networks.

1.2 Functional and Non-Functional Requirements

Software requirements are descritpions of the services which the system should

provide and the constriants under which the system must operate. Software requirements

are partitioned into functional requirements and non-functional requirements. Functional

requirements capture the intended behavior of the system. This behavior may be

expressed as services, tasks or functions the system is required to perform. Non-

functional requirements are constraints on various attributes of these service, tasks or

functions. Functional requirements can be thought as verbs while non-functional

requirements can be thought as adjectives or adverbs.

1.2.1 Functional Requirements

 One of the first steps in developing component-based distributed systems is to

identify the system’s functional requirements (i.e., what is intended to be done). A clear

system functional requirement will facilitate the system design.

 For example, in a bank system, Automatic Teller Machines (ATMs) are used by

banks to let customers withdraw money from their accounts without interaction with bank

personnel and at any time of day. Since they operate on bank accounts, there is a need for

a high security mechanism. The system to be built is a security device to be inserted

between the ATM and the bank. It operates on the banks database, using an encrypted

communication line, to serve requests from the ATM. For this bank system, the following

functional requirements can be identified:

1) The DES encryption protocol shall be used for communication with the bank and the

ATM with a key stored internally in the device.

 10

2) The encryption key shall be set using a keypad mounted on the device.

3) There shall be a service check_pin (customerid, code) which checks that the customer

with the id given by customerid has the PIN-code code.

4) There shall be a service get_balance (account) which returns the balance of the account

with number account.

5) There shall be a service withdraw (account, amount) which withdraws amount from

the account with number account.

 The system functional requirements can be defined by use cases [11]. A use case

defines a goal-oriented set of interactions between external actors and a system under

consideration. A use case is initiated by a user with a particular goal in mind, and

followed by a sequence of interactions between actors and the system that are necessary

to deliver the service that satisfies the goal. A complete set of use cases specifies all the

different ways to use the system, and therefore defines all behavior required (functional

requirements) of the system. Table 1.1 shows a typical template of use cases.

 11

Table 1.1 A Typical Use Case Template
Use Case ID:

Use Case Name:
Created By: Last Updated By:

Date Created: Date Last Updated:
Actors: Outside entities

Description: Provide a brief description of the reason for and outcome of this use case.
Preconditions: List any activities that must take place, or any conditions that must be true,

before the use case can be started.
Postconditions: Describe the state of the system at the conclusion of the use case execution.
Normal Course: Provide a detailed description of the user actions and system responses that

will take place during execution of the use case under normal, expected
conditions.

Alternative Courses: Document other, legitimate usage scenarios that can take place within this use
case separately in this section.

Exceptions: Describe any anticipated error conditions that could occur during execution of
the use case, and define how the system is to respond to those conditions.

Includes: List any other use cases that are included by this use case.
Priority: Indicate the relative priority of implementing the functionality required to

allow this use case to be executed.
Frequency of Use: Estimate the number of times this use case will be performed by the actors per

some appropriate unit of time.
Business Rules: List any business rules that influence this use case.

Special Requirements: Identify any additional requirements, such as nonfunctional requirements, for
the use case that may need to be addressed during design or implementation.

Assumptions: List any assumptions that were made in the analysis that led to accepting this
use case into the product description and writing the use case description.

Notes and Issues: List any additional comments about this use case or any remaining open issues
or TBDs (To Be Determined) that must be resolved.

1.2.2 Non-functional Requirements

 Non-functional requirements (i.e., Quality of Service) define how well the system

operates or how well the functionality is exhibited. Each non-functional requirement

defines the quality of a system from one specific aspect. Some examples of non-

functional requirements are: timeliness, performance, reliability, availability, safety,

security, scalability, flexibility, usability, maintainability, and reusability.

Non-functional requirements are consequences of the design decisions taken to

implement the system’s functional requirements. They are rarely considered when system

is built, especially in the early stages of the system development phase. The following are

reasons for not considering these requirements explicitly: a) non-functional requirements

 12

are usually very abstract and can be stated only informally, b) non-functional

requirements are rarely supported by languages, methodologies and tools, c) non-

functional requirements are more complex to deal with, and d) non-functional

requirements are difficult to effectively satisfy during the system development [12].

It is not trivial to verify whether a specific non-functional requirement is satisfied

by the final product or not. Very often non-functional requirements conflict and compete

with each other, e.g., security and performance. Non-functional requirements commonly

concern environment builders instead of the application programmers. The separation of

functional and non-functional requirements cannot be easily defined.

 There are no good approaches for tackling the non-functional requirements. These

non-functional aspects should be treated as independent design dimensions, specified in

an implementation-independent way and implemented in such a way that the resulting

system behavior becomes predictable. Non-functional requirements should be stated in

the requirements and taken into consideration from the beginning, i.e., during the

architectural phase. Unfortunately, current software engineering practices often consider

non-functional requirements only during the implementation phase. Obviously, the

explicit treatment of the non-functional requirements from the beginning of the

development is necessary for building a predictable system out of components.

1.3 System Composition and Decomposition

 In developing component-based distributed systems, with components as the

building blocks, it is important to decompose the system’s functional and non-functional

requirements into the individual components and predict/observe the system functional

and non-functional requirements by composing the functional and non-functional

requirements of the individual components.

 13

1.3.1 Composition and Decomposition of Functional Requirements

 The System decomposition is a divide-and-conquer approach to deal with

complexity of the system and improve its reusability. A system can be decomposed into

interacting subsystems. Each subsystem may have a similar internal decomposition.

Components are the elements at the lowest level in a system hierarchy. The system

hierarchy allows a system to be understood at different levels of granularity. A subsystem

is more specialized and implements simpler functionality. The decomposition of system

functionality may maximize the cohesion within subsystem and minimize the coupling

between subsystems. Other factors may also affect the system decomposition. For

example, assume that in a component-based distributed system, there are two

components: the client component, and the server component. The decomposition of

application functionality between the client component and the server component

depends on whether the goal is to minimize the network bandwidth or to maximize the

client computation. For instance, thin client-based systems move all computations to the

server component and just send updates to the client component. As a result, clients do

not have much computing power but networks need to have more bandwidth and less

latency for the system to run in a satisfactory manner

In the composition of system functionality, subsystems are selected and integrated

into a system under specific system architecture. In some scenarios, glues or wrappers are

needed to make subsystems interoperate with each other. Some potential problems may

arise in system composition. For example, an architectural mismatch, which occurs when

subsystems fail to meet the architectural constraints; functional deficiencies, which arise

when subsystems do not satisfy all the functional requirements; and combining quality

attributes, which means how the system inherits properties that are associated with the

individual components. In the system composition, emerging functionality may arise

from the interactions of subsystems. In a sound composition of system functionality,

subsystems are integrated together and cooperate properly to achieve the desired system

functionality.

 14

1.3.2 Composition and Decomposition of Non-functional Requirements

 Future systems will need to satisfy not only the functional requirements but also

the non-functional requirements. This is especially true for real-time systems, multimedia

systems, e-commerce systems, mission critical systems, and safety critical systems.

Therefore, while developing component-based distributed systems, the composition and

decomposition of non-functional requirements also need a proper attention.

 In the decomposition of non-functional requirements, a system-wide property is

decomposed into the properties of its subsystems. By taking different design decisions,

the system-wide property can be built into subsystems. The property decomposed into

subsystems can be used to select appropriate subsystems during the system integration

phase.

 In the composition of non-functional requirements, system quality attributes are

predicted based on the properties of the individual components. The assembly of the

system from subsystems needs to be in a fashion that preserves the predictions. How can

systems be composed in a way that certain system-wide quality requirements will be met

is still an open research problem.

1.4 Objectives of This Thesis

 The objectives of this thesis are to study the issues of incorporating non-

functional requirements (Quality of Service) into the development of component-based

software systems and propose an approach for decomposing system-level non-functional

requirements into individual components and composing non-functional properties of

individual components to predict the system-wide non-functional properties. This

approach will assist the system developers in selecting appropriate components,

predicting the properties of the integrated system and empirically validating the predicted

values. This work is a significant part of a research effort called UniFrame. The proposed

composition and decomposition approach is used in generating (semi-automatically)

component-based distributed systems using UniFrame.

 15

1.5 Contributions of This Thesis

 The contributions of this thesis are:

1) Propose an approach to engineer non-functional requirements into the development of

component-based software systems. The proposed approach provides the composition

and decomposition rules for factoring system-wide non-functional requirements into

individual components and composing non-functional properties of individual

components to predict the system-wide non-functional properties.

2) Identify inter-component communication patterns and investigate their effect on the

composition and decomposition of non-functional properties.

3) Preliminarily incorporate the network component into the proposed QoS composition

and decomposition approach.

4) Identify the key environment factors and preliminarily analyze their effects on system

composition and decomposition.

1.6 Organization of This Thesis

 The thesis is organized as:

The second chapter introduces the background and the related work. The third chapter

presents an overview of the UniFrame. The fourth chapter presents the system

composition and decomposition rules. The fifth chapter investigates the inter-component

communication patterns and their effects on system composition and decomposition. The

sixth chapter investigates the effect of the network on the composition and decomposition

of QoS parameters. The seventh chapter presents the effects of the environment on the

composition and decomposition of non-functional properties. The eighth chapter makes

several conclusions and indicates future directions.

 16

2. BACKGROUND AND RELATED WORKS

2.1 Current Approaches in System Composition and Decomposition

 System composition and decomposition with reasoning about system properties

are important in component-based system design. This compositional design makes it

possible that the component developers can develop and verify components

independently and system designers can build a system and verify the system properties

with given properties of components. Some of the ongoing research works related to

system composition and decomposition with property reasoning are briefly discussed in

the following sections.

2.1.1 Formal Approaches

 System composition and decomposition is a broad concept and the problem can

be defined and dealt with in different contexts, for example, formal methods, software

engineering, programming languages. In the following subsections, the current formal

approaches are discussed.

2.1.1.1 Assumption-Guarantee Approach

Abadi and Lamport [13] investigated the composition of an assumption-guarantee

property. An assumption-guarantee property states that a component can guarantee a

desired property in composition as long as certain assumptions hold true for its

environment. In the assumption-guarantee composition reasoning approach, a component

is differentiated from its environment. The assumptions about the environment can be

constrained by the safety property (assert that something bad does not happen) or the

 17

progress property (assert that something good eventually does happen). The safety

property composed well, but the progress property does not compose well, even though

the progress property is widely used in system specifications. It is not completely clear

what kind of constraints can be put on the environment if a component needs to guarantee

a certain property. The constraints on the environment cannot be too strong because it

would make the component less reusable, nor be too weak, because it would not realize

the guaranteed property in composition.

2.1.1.2 Composition Based on Existential and Universal Properties

Chandy, Sanders, and Charpentier [14-17] study the system composition by

starting from those compositional properties. The compositional property is the property

that allows the deduction of the system property from the component properties using

simple rules. For example, mass is a compositional property because the mass of a system

is the sum of the masses of its components. Two types of the compositional property

were proposed: an existential property and a universal property. A property is of an

existential type when it holds in any system in which at least one component has that

property. A property is of a universal type when it holds in any system in which all

components have that property. Consider the example of putting pieces together in a

jigsaw puzzle. An example of a universal property is ”the component is entirely dark

colored.” If the entirely dark-colored components are put together, an entirely dark-

colored (larger) component will be got. An example of an existential property is: ”the

component has a light-colored region.” A component has a light-colored region if it has a

subcomponent with a light-colored region.

They proposed a theory of composition based on existential and universal

properties. However, some properties are neither universal nor existential. Therefore, the

problem is how to compute the property of composed systems given properties of

components, whether the properties are compositional or not. The composition of non-

compositional properties can be dealt with by first specifying components as

conjunctions of universal and existential properties so that universal and existential

 18

system properties can be readily derived from component properties. Then the non-

compositional system properties can be derived from these universal and existential

system properties.�

2.1.2 Software Architecture-Based Approach

It is believed that predicting and ensuring system-level quality attributes and

controlling component feature interactions are closely related [18]. In an architecture-

based approach, a set of components and connectors along with their topology and

pattern of interaction is used to characterize the necessary context in which the

component will be deployed.

2.1.2.1 Scenario-Based Architectural Analysis Method

 In [19], a scenario-based architectural analysis method (SAAM) is presented,

using scenarios to analyze architectures to determine their fitness with respect to certain

qualities of the resulting systems, for example, performance, reliability, security,

maintainability, portability, and etc. The method follows the following steps: describe

candidate architecture, develop scenarios, perform scenario evaluations, reveal scenario

interactions, and the overall evaluation.

2.1.2.2 Attribute-Based Architecture Styles

In [20], the architectural style for composition is used to characterize the

necessary context in which the component will be deployed. An attribute-reasoning

framework is associated with an architectural style. These reasoning frameworks are

based on quality attribute-specific models, which exist in the various quality attribute

communities. For example, if the goal is to reason about reliability, then the salient

features of the architecture (such as redundancy) need to be mapped onto reliability

models (such as Markov models). This approach makes it possible that software

 19

architecture can be designed and analyzed based on reusing known patterns of software

components with predictable properties.

2.1.2.3 Architecture Tradeoff Analysis Method

In [21], the architecture tradeoff analysis method (ATAM) is proposed to consider

interactions among quality attributes and evaluate software architecture’s fitness with

respect to multiple competing quality attributes. The steps of the method are: collect

scenarios, collect requirements/constraints/environment, describe architectural views,

realize scenarios, perform attribute specific analysis, identify sensitivities, and identify

tradeoffs.

2.2 Analysis of Non-Functional Requirements at the Early Design Phase

 In traditional software development, the non-functional requirements are rarely

considered when software is built, especially in the early stages of the software

development process. The failure to meet the non-functional requirements is mostly due

to a lack of consideration of non-functional requirement issues early in the development

process. The non-functional requirement issues are ignored until system testing or later.

The non-functional requirement issues discovered until late in the development process

are more difficult and more expensive to fix. Therefore, incorporating non-functional

requirements into the early design phase of software development process is important to

build quality software with reduced time-to-market. Four approaches dealing with non-

functional requirements at the early design phase are discussed in the following sections.

2.2.1 Parmenides Framework

 In [22], an architecture-based framework is proposed for dealing with non-

functional requirements during both development and execution time of dynamic

distributed systems. The framework consists of a process-oriented language for

 20

describing non-functional requirements at the begin of the development, a guideline on

how to incorporate non-functional requirements into the software architecture, a set of

rules for refinement of non-functional architectures, a strategy for mapping non-

functional architectures into actual implementation elements, a product-oriented language

suitable for describing non-functional requirements at the final product, and a set of

change operations that incorporates conditions for preserving the integrity of non-

functional properties.

 In this framework, non-functional requirements are fundamentally viewed as

constraints on possible design decisions for implementing the functional parts of

software. Hence, every decision taken for implementing a functionality of the software

must respect the constraints imposed by the non-functional part of the requirements. The

non-functional requirement is modeled by three abstractions: NF-Attribute, NF-

Realization and NF-Requirement. A NF-Attribute models both any non-functional

characteristic of the software that can be precisely pointed out and any non-functional

feature that cannot be quantified, but may be defined as present in the software in a

certain level (security). NF-Requirements are constraints over the NF-Attributes. NF-

Realizations act as design constraints; if they are adopted the NF-Requirement can be

achieved.

 The non-functional requirements are specified by a process non-functional

language that contains the definition of many NF-Attributes, many NF-Realizations and

one NF-Requirement. The non-functional requirements then can be integrated with the

software architecture elements. The refinement rules define how a concrete non-

functional architecture is obtained from an abstract non-functional one. In the last step of

the development process, the mapping strategy guides how the abstract elements may be

mapped into actual implementation elements.

 21

2.2.2 SPE

 The performance of a system at early development stage (concept, requirement,

and design) can be validated by constructing and evaluating a system performance model.

In using the model-based approach, the following problems must be addressed:

1) In pre-implementation stages factual information is limited: final software plans have

not been formulated, actual resource usage can only be estimated, and workload

characteristics must be anticipated.

2) The large number of uncertainties introduces the risk of model omissions: models only

reflect what you know to model, and the omissions may have serious performance

consequences.

3) Thorough modeling studies may require extensive effort to study the many variations

of operational scenarios possible in the final system.

4) Models are not universal: different types of system assessments require particular

types of models. For example the models of typical response time are different from

models to assess reliability, fault tolerance, performance, or safety.

 The SPE approach [23] incorporates the model-based techniques with the

performance engineering process for mitigating these problems. There are five steps in

using SPE approach to validate a system performance:

1) Capture performance requirements, and understand the system functions and rates of

operation.

In most systems there are several types of response, with different requirements.

Users can be asked to describe performance requirements, to identify the types and the

acceptable delays and capacity limitations. An experienced analyst must review their

responses with the users. Practices for obtaining performance requirements are poorly

developed. Research is needed on questions such as tests for realism, testability,

completeness and consistency of performance requirements, on methodology for

capturing them, preferably in the context of a standard software notation such as UML,

and on the construction of performance tests from the requirements.

2) Understand the structure of the system and develop a model which is a performance

abstraction of the system.

 22

 In this step a software execution model is created, representing the functions the

software must perform. It traces scenarios through typical execution paths. Software

execution models that represent the sequence of operations, including precedence,

looping, choices, and forking/joining of flows, is used to capturing scenarios which

represent different types of response. Then a performance evaluation model (system

execution model, a queuing model) is created. Demands captured in an execution graph

can be converted into parameters of a queuing model.

3) Capture the resource requirements and insert them as model parameters.

 There seem to be four different sources of actual values for execution demands:

a) Measurements on parts of the software which are already implemented, such as basic

services, existing components, a design prototype or an earlier version [15],

b) Compiler output from existing code,

c) Demand estimates (CPU, I/O, etc.) based on designer judgment and reviews,

d) “Budget” figures, estimated from experience and the performance requirements, may

be used as demand goals for designers to meet (rather than as estimates for the code they

will produce).

The actual demand parameters for CPU time, disk operations, network services

and so forth are estimated and inserted into the queuing model.

4) Solve the model and compare the results to the requirements.

 Queuing network models are relatively lightweight and give basic analytic models

which solve quickly. However the basic forms of queuing network models are limited to

systems that use one resource at a time.

5) Follow-up: interpret the predictions to suggest changes to aspects that fail to meet

performance requirements.

 If the requirements are not met, the analysis will often point to changes that make

it satisfactory. These may be changes to the execution platform, to the software design, or

to the requirements. Changes to the software design may be to reduce the cost of

individual operations, or to reduce the number of repetitions of an operation. Larger scale

changes may be to change the process architecture or the object architecture, to reduce

overhead costs or to simplify the control path. If the bottleneck is a processing device

 23

(processor, network card, I/O channel, disk, or attached device of some kind) then the

analysis can be modified to consider more powerful devices. If the cost of adapting the

software or the environment is too high, one should finally consider the possibility that

the requirements are unrealistic and should be relaxed.

2.2.3 PASA

 PASA [24] is a method for the performance assessment of software architects. It

uses the principles and techniques of SPE to identify potential areas of risk within the

architecture with respect to performance and other quality objectives. If a problem is

found, PASA also identifies strategies for reducing or eliminating those risks. PASA

approach is scenario-based. These scenarios provide a means of reasoning about the

performance of the software as well as other qualities. The PASA approach consists of

the nine steps summarized below:

1) Process overview --- The assessment process begins with a presentation designed to

familiarize both managers and developers with the reasons for an architectural

assessment, the assessment process, and the outcomes.

2) Architecture overview --- in this step, the development team presents the current or

planned architecture.

3) Identification of critical use case --- the externally visible behaviors of the software

that are important to responsiveness or scalability is identified.

4) Selection of key performance scenarios --- for each critical use case, the scenarios that

are important to performance are identified.

5) Identification of performance objectives --- Precise, quantitative, measurable

performance objectives are identified for each key scenario.

6) Architecture clarification and discussion --- Participants conduct a more detailed

discussion of the architecture and the specific features that support the key performance

scenarios. Problem area is explored in more depth.

7) Architectural analysis --- the architecture is analyzed to determine whether it will

support the performance objectives.

 24

8) Identification of alternatives --- if a problem is found, alternatives for meeting

performance objectives are identified.

9) Presentation of results --- results and recommendations are presented to managers and

developers.

2.2.4 UCM2LQN

 In [25], a performance aware software development approach was proposed. In

this approach, a software performance model, LQN, is created from scenarios, which is

described with UCM.

 Use Case Maps (UCMs) are used as a visual notation for describing causal

relationships between responsibilities of one or more use cases. A Use Case Map is a

collection of elements that describe one or more scenarios in a system. A scenario is

represented by a path, shown as a line from a start point to an end point, and traversed by

a token from start to end. Paths can be overlaid on components representing functional or

logical entities, which may represent hardware or software resources. Responsibilities

represent functions to be accomplished. The generation of performance models assumes

that computational workload is associated with responsibilities, or is overhead implied by

crossings between components. Responsibilities are annotated by service demands

(number of CPU or disk operations, or calls to other services) and data store operations.

 Compared to the UML, UCMs fit in between Use Cases and UML behavioral

diagrams. UCMs provide a behavioral framework for evaluating and making architectural

decisions at a high level of design. UCMs bridge the gap between requirements and

design by combining behavior and structure in one view and by flexibly allocating

scenario responsibilities to architectural components.

 Layered Queuing Networks (LQN) models contention for both software and

hardware resources, based on request for services. Entities in the role of clients make

service requests and queue at the server. In LQN, servers may make requests to other

servers, with any number of layers. An LQN can thus model the performance impact of

 25

the software structure and interaction, and be used to detect software bottlenecks as well

as hardware performance bottlenecks.

 In an LQN the software resources are called tasks, and the hardware resources are

called devices. Tasks can have priority on their CPU. An LQN can be represented by a

graph with nodes for tasks and devices, and arrows for service requests.

 A program called UCM2LQN automatically extracts a LQN performance model

from a UCM scenario model. The LQN model is completed by adding details of the

hardware and software aspects of the execution environment.

 In this chapter, the composition and decomposition of system properties using

formal methods and the architecture approach, as well as the incorporation of system

non-functional requirements into early design phase based on software architecture are

discussed. Due to the lack of mathematical foundation, support of programming

languages, and corresponding tools, much more research work is needed.

In the next chapter, a framework, UniFrame, for integrating heterogeneous

software components is presented.

 26

3. OVERVIEW OF UNIFRAME

 UniFrame [26] is a framework for building distributed systems by integrating

geographically distributed software components with an emphasis on the QoS and

heterogeneity. The salient features of UniFrame are: presence of a Meta component

model, a seamless interoperation of heterogeneous software components, an active

component resource discovery mechanism, a QoS-aware system development, and a

generative system production.

3.1 Meta Component Model

 In UniFrame, a meta component model is presented. The meta component model

consists of the following parts:

♦ Components: The UniFrame approach is component-based. Components are considered

to be autonomous entities with non-uniform implementations. This means that the

components may adhere to diverse distributed computing models. Every component has

three aspects:

• Computational Aspect: This refers to the task carried out by the component. It is

a form of introspection by which every component describes its services to

other components. UMM uses two categories of parameters namely:

∗ Inherent parameters: This consists of simple textual information

containing the book-keeping information of a component.

∗ Functional parameters: This consists of a formal and precise description

of the computation, its associated contracts and the levels of service that

the component offers.

• Cooperative Aspect: This consists of,

∗ Pre-processing collaborators: other components on which this component

depends.

 27

∗ Post-processing collaborators: other components that may depend on this

component.

• Auxiliary Aspect: This aspect addresses issues like mobility, security and fault

tolerance of a component.

♦ Service and Service Guarantees: A UMM component offers services that may be in the

form of an intensive computational effort or an access to underlying resources. The

quality of the service offered by a component plays an important role in whether or not

the component is selected for a given system. The quality of service of a component is

an indication of the component developer’s confidence in the ability of that component

to carry out a specified service. In UMM, every component must specify the quality of

service that it can offer in terms of the QoS Parameters.

♦ Infrastructure: UMM utilizes the headhunters and the Internet Component Brokers

(ICB) as infrastructure to address the issue of interoperability between heterogeneous

DCS models. A detailed description of the infrastructure is given in section 3.3.

3.2 Seamless Interoperation of Heterogeneous Software Components

Software components can be developed using different component models, such

as, CORBA, Java, and .Net. Currently, there is no universally accepted component

model. It can be expected that in the near future, the heterogeneity of components will

still exist. The glue and wrapper technique allows the composition of heterogeneous

components seamlessly. In UniFrame, the glues and wrappers can be generated

automatically based on Two-Level-Grammar [28].

3.3 Active Component Resource Discovery

As components are deployed on network, a discovery service is needed to search

those components. UniFrame provides a resource discovery service, URDS [29], as

shown in Figure 3.1, which consists of the following components: Headhunters, Active

Registries (AR) and Internet Component Brokers (ICB).

 28

The responsibilities of the headhunter include: detection of presence of

service providers (service discovery), registration of functionality of the service

providers and returning to the Query Manager a list of discovered service providers

that match the requirements.

Active-Registries listen and respond to multicast messages from headhunters.

Each also has introspection capabilities to discover not only the instances, but also

the specifications of the components registered with them.

The ICB consists of Query Manager (QM), the Domain Security Manager (DSM),

Link Manager (LM) and Adapter Manager (AM).

The QM is used to translate a system integrator’s requirements specification

for a component into a Structured Query Language (SQL) statement and dispatch

this query to the appropriate headhunters. The headhunters, in turn, return lists of

service provider components that match the search criteria contained in the query.

The QM and the Link Manager together are responsible for propagating the queries

to other linked ICBs.

The URDS discovery protocol is based on periodic multicast announcements.

The multicasting exposes the URDS to a number of security threats. The DSM is

responsible for ensuring that the security and integrity of the URDS are maintained.

The security scheme implemented by the DSM involves the generation and

distribution of secret keys for the ICB. It also enforces multicast group memberships

and controls access to multicast addresses allocated for a particular domain, through

authentication and use of Access Control Lists. Access Control Lists allow a sender

or an authorized third party to maintain an inclusion or an exclusion list of hosts

on the Internet corresponding to a multicast group. Each time a host requests to

join the multicast group, the sender or the third party checks with the access

control list to determine whether the host is authorized to join the group.

Link Manager establishes links between ICBs to form a federation and

propagate the queries received from the QM to the linked ICBs. The ICB

 29

administrator configures the LM with the location information of LMs of other ICBs

with which links are to be established.

Adapter Manager: It acts as registry or lookup service for clients seeking adapter

components. The adapter components register with the AM and at the same time

indicates which component models they can bridge efficiently. The AM is contacted by

the clients to locate the adapter components matching their requirements.

Figure 3.1 URDS Architecture (from [29])

3.4 QoS Aware System Development

With more and more applications requiring QoS guarantees, especially in

multimedia, real-time and mission-critical applications, software developers need to

consider QoS during the software developing process. In UniFrame, a QoS framework

 30

[UQOS] is created to deal with QoS issues during the system development. The QoS

framework consists of two levels: component level and system level. At the component

level, it provides the QoS catalog [30] for certifying component QoS and formal

specification of the component QoS. At the system level, UQOS provides the system

QoS decomposition and composition rules, which decompose the system-level QoS into

the QoS of individual component and compose the component-level QoS to reason about

the system-level QoS. The dynamic testing of the individual component QoS and the

system QoS is provided by use of event grammar [31].

The creation of a QoS catalog is the first step in an effort to build the UniFrame

QoS framework. The QoS Catalog is intended to act as a tool for the standardization of

the notion of quality of software components. The catalog contains detailed descriptions

about the QoS parameters of software components including the metrics, evaluation

methodologies, the factors influencing the parameters and the interrelationships among

the parameters. The QoS Catalog, used in conjunction with the UniFrame approach,

would force the component developer to consider and validate the QoS of a component

before advertising its quality. The motivation for creating the QoS Catalog is two fold. It

would prove to be a valuable tool for:

♦ The component developer, by:

• Acting as a reference manual for incorporating QoS parameters into the

components being developed.

• Allowing him to enhance the performance of his components in an iterative

fashion by being able to quantify their QoS parameters.

• Enabling him to advertise the Quality of his components, after validation, by

utilizing the QoS metrics.

♦ The System Developer, by:

• Enabling him to specify the QoS requirements for the components that are

incorporated into his system.

• Allowing him to verify and validate the claims made by a component developer

regarding the quality of component before incorporating it into the system.

 31

• Allowing him to make objective comparisons of the Quality of Components

having the same functionality.

• Empowering him with the means to choose the best-suited components for his

system.

The general format used to describe each parameter in the catalog is outlined below:

♦ Name: Indicates the name of the parameter.

♦ Intent: Indicates the purpose of the parameter.

♦ Description: Provides a brief description of the parameter.

♦ Motivation: States the motivation behind the inclusion of the parameter and the

importance of the parameter.

♦ Applicability: Indicates the type of systems where the parameter can be used.

♦ Model Used: Indicates the model used for Quantification of the parameter.

♦ Influencing Factors: Indicates the factors on which the parameter depends.

♦ Measure: Indicates the unit used to measure the parameter.

♦ Evaluation Procedure: Outlines the steps involved in the quantification procedure.

♦ Evaluation Formulae: Indicates the formulae used in the evaluation procedure.

♦ Result Type: Indicates the type of the result returned by the evaluation procedure.

♦ Nature: Indicates the nature of the parameter as suggested in [OMG02].

♦ Static/Dynamic: Indicates whether the value of the parameter is constant or varies

during run-time.

♦ Increasing/Decreasing: Indicates whether higher values of the parameter correspond to

better QoS (Increasing) or lower values correspond to better QoS (Decreasing).

♦ Consequences: Indicates the possible effects of using the chosen model to quantify the

parameter.

♦ Related Parameters: Indicates the other related QoS parameters.

♦ Domain of Usage: Indicates the domains where the parameter is widely used.

♦ User Caution: It warns the user about the consequences of choosing a component with a

lower level of a QoS parameter over another component (having the same

functionality) with a higher level of the QoS parameter.

♦ Aliases: Indicates other prevalent equivalent names for a parameter, if any.

 32

 In UniFrame, the component QoS specification includes not only the QoS values

but also the variables of component execution environment and component usage

patterns [27].

Some of the environment variables are CPU speed, the memory, the disk

bandwidth, network bandwidth, and the process priority assigned to the component. The

fact that the environment variables can affect the QoS of a software component

implies that any QoS associated with a software component would not necessarily

hold true in foreign environments. Hence, it becomes critical to account for the

effect of the execution environment on the QoS of software components. On the

other hand, it is possible to enhance the QoS of a software component by suitably

varying its execution environment. A component user might desire to improve a

component’s QoS (depending on the component’s semantics) by suitably altering its

execution environment (like providing a faster processor, increasing the memory

etc).

Once a component is deployed on the network by the component user, it

may be subjected to varying usage patterns, for example, the number of concurrent

users for the component may be different at different time. The variations in the

component usage patterns can have a profound impact on the QoS of a

component. This in effect implies that it is crucial to be able to deduce the effect of

usage patterns on the QoS of software components.

3.5 Generative System Production

 UniFrame is component-based and thus it improves the system creation

productivity by reusing components. In UniFrame, a generative domain model is used to

further reuse the system architecture and facilitate the product generation from a product

family by customization. The generative domain model (GDM) [32] consists of a

problem space, a solution space, and the configuration knowledge mapping between

them. The problem space consists of the application-oriented concepts and features that

application developers can use to express their needs. The GDM contains a design space

 33

model to represent the common and variable properties of a software architecture and a

set of abstract components as specifications for creating reusable concrete components.

The solution space consists of combinations of concrete components developed during

the component engineering phase. The configuration knowledge includes illegal feature

combinations, default settings, default dependencies, construction rules and optimization

rules, etc. It also includes additional important knowledge, such as, QoS composition and

decomposition rules, which help ensure the assembled distributed system meets not only

the functional requirements but also the non-function requirements.

In UniFrame system development process, the system requirements are

decomposed and abstract components with certain non-functional constraints are

determined based on the generative domain model. The qualified concrete components

can be found from network by use of the search activity in UniFrame. The final system

can be generated by selecting proper components and integrating them. Finally the

integrated system can be statically verified and dynamic tested.

In summary, UniFrame provides an approach, which has the potential to improve

the productivity of software development and facilitate the development of software

product with guaranteed quality of services. In the next chapter, the system composition

and decomposition rules are introduced.

 34

4. SYSTEM COMPOSITION AND DECOMPOSITION RULES

4.1 Introduction

 In this chapter, system composition and decomposition rules are proposed to

address the problem of how to factor the non-functional requirements of the entire system

into the corresponding properties of individual components (top-down) and how to

predict the non-functional properties of the integrated system based on the individual

component properties (bottom-up).

4.2 Classification of System Non-Functional Properties

The non-functional properties of a system cover a wide range of the aspects of the

system, and may have different attributes. The aim of this section is to investigate these

non-functional properties from the angles of the system composition and the

decomposition, and classify them into different categories. The classification of the

system non-functional properties provides knowledge on how to treat these properties

during system composition and decomposition.

4.2.1 Static/Dynamic Non-Functional Properties

Static non-functional properties can be evaluated by examining the internal

structure of a software component. These properties are stable in different environments

provided the internal structure of component is unchanged. The examples of static non-

functional properties are reliability, maintainability, portability, scalability, reusability,

presentation, usability, security, priority, and parallelism constraints, etc. Dynamic non-

functional properties, on the other hand, can be measured by observing the system

 35

behavior at run-time. These system properties are tightly associated with the deployment

environment. Examples of dynamic properties are throughput, turnaround time, capacity,

availability, result, etc.

 From the point of the system composition and decomposition, static non-

functional properties may compose well as they tend not to change during the system

execution. The dynamic non-functional properties are influenced by the execution

environment, which includes computational resources such as the CPU time, the memory,

the disk bandwidth; communication resources such as the network bandwidth; the

software resources such as the lock, the pool, the buffer, the semaphores, and the

interactions with other components. Most of these factors are not known in advance,

thereby the composition of these properties becomes difficult.

4.2.2 Domain Dependent / Independent Non-Functional Properties

Different non-functional properties are emphasized in different application

domains. For example, security is most important in the banking domain, while safety

and reliability are highly demanded in health care systems. In different application

domains, the same non-functional properties may (domain independent) or may not

(domain dependent) have the same decomposition and composition rules. For example,

the reusability is an example of a domain independent property, while the throughput is

an example of a domain dependent property. The system reusability depends on the

component with the minimum value of reusability. For a system with two components, if

the two components are in a sequence, then the system throughput depends on the

component with the minimum throughput; if the two components are in parallel, then the

system throughput is the sum of the throughputs of the two components. Reliability is

another example of domain dependent property. For a system with two components, if

the two components are in serial configuration, the system is reliable if all of these two

components are reliable. On the other hand, if the two components are in parallel or

redundant configuration, then the system is reliable if at least one component is reliable.

Obviously, the domain independent system properties are more convenient to deal with

 36

than the domain dependent system properties from the angle of the composition and the

decomposition, because the latter need further information from the specific application

domains.

4.2.3 Compositional/Non-Compositional Non-Functional Properties

As defined in [17], the compositional property allows deducing the system

property from the individual component properties using simple rules. If a property is not

compositional at all, then the composed system property cannot be easily predicted based

on the component properties using simple rules. For example, mass (M) and energy (E)

are compositional properties because they are conservative. Therefore it is valid to write:

M1+M2=M1+2, E1+E2=E1+2. However, temperature (T) is not compositional because there

is no simple relation between the temperature of a system and the temperature of its

subsystems. In this sense, T1+T2 =T1+2 is not valid. To obtain the temperature of a

composed system, a relation of the temperature with the mass and the energy can be

established as: E=κ×M×T, where κ is a constant. Based on this relation, the temperature

in the composed system can be deduced in the following way:

E1+2=κ×M1+2×T1+2 (4.1)

E1=κ×M1×T1 (4.2)

E2=κ×M2×T2 (4.3)

Since energy is compositional:

E1+2=E1+E2 (4.4)

κ×M1+2×T1+2=κ×M1×T1+κ×M2×T2 (4.5)

21

2211
21

+
+

×+×
=

M

TMTM
T (4.6)

 37

Since mass is compositional:

21

2211
21 MM

TMTM
T

+
×+×

=+ (4.7)

So

221121 TcTcT +=+ (4.8)

Where
21

1
1 MM

M
c

+
= and

21

2
2 MM

M
c

+
= . The temperature of a composed system is non-

compositional because the values of the coefficients c1 and c2 in equation (4.8) depend on

the properties (mass) of individual components.

The maintainability of a software system that is built from individual components

is also non-compositional. If the maintainability is evaluated as the time unit per line of

code [30], then the system maintainability can be written as:

∑∑
∑∑

∑

∑

∑
=

=

==

=

=

= ×=×=
×

=== n

i ii

n

i
n

j
j

i
n

i
i

n

i
ii

n

i
i

n

i
i

McM
LOC

LOC

LOC

LOCM

LOC

time

LOC

time
M

1
1

11

1

1

1 (4.9)

where

∑
=

=
n

j
j

i
i

LOC

LOC
c

1

 (i=1, 2, …, n), LOC=Lines of Code.

The response time of a software system is a compositional property because the

system response time is the sum of the response time of individual components.

 38

4.2.4 User-Oriented /System-Oriented Non-Functional Properties

Some non-functional properties have meaning to users while some other non-

functional properties have meaning to system maintainers. The user-oriented properties

are perceptible to users and usually associated with individual user cases. Examples of

user-oriented properties are response time, accuracy of results, availability, usability,

reliability, etc. The system-oriented properties are concerns of system maintainers. These

properties are associated with the entire system. Examples of system-oriented properties

are throughput, resource utilization, security, maintainability, reusability, portability,

adaptability, etc.

In composition and decomposition of non-functional properties, the user-oriented

properties are applicable in the use case level while system-oriented properties are

applicable in the whole system.

4.3 The Decomposition Rules

In the UniFrame approach, the decomposition rules are used to factor the system

non-functional requirements (QoS) into the individual abstract components (components

determined based on the Generative Domain Model, GDM, of the application domain) of

the target system. The non-functional requirements decomposed into individual abstract

components are used as one of the criteria to search for those concrete components

(components implement the functionalities of the corresponding abstract components)

from the Internet.

Two levels of decomposition rules are proposed in this research: the domain

independent rules and the domain specific rules. The domain independent decomposition

rules (DIDR) are abstract rules over different domains and have no specific domain

information. The domain independent rules can be reused in different domains. However,

they are usually weak in decomposing system non-functional requirements. Therefore,

the corresponding domain dependent rules are needed.

 39

4.3.1 Domain Independent Decomposition Rules (DIDR)

The decomposition of a system non-functional property could be homogeneous or

heterogeneous. For a homogeneous decomposition, the system non-functional property

(X) is decomposed to the same non-functional property (X) of individual components.

For a heterogeneous decomposition, the system non-functional property X is decomposed

to a different non-functional property (Y) of individual components.

For a homogeneous decomposition, the following de-compositional properties are

identified: an at-least-one property, a k-out-of-n property, a universal property, and a

component-specific property. A property X is an at-least-one property when any system

that has property X contains at least one component having the property X. An example

of at least one property is: “platform dependent”. A system is platform dependent means

at least one component in the system is platform dependent. For example, a system

consists of four components, of which three are pure Java components and the fourth

component is a Java component but calls a C procedure via JNI (Java Native Interface).

The three pure Java components are platform independent while the fourth component is

platform dependent. Therefore, the system is platform dependent. A property X is a k-

out-of-n property when any system that has the property X contains at least k out of n

components having the property X (n is the number of components in the system).

Consider the reliability in a fault tolerant system in which users can access documents

over replicated Web servers. The fault tolerant algorithm breaks the user request for a

Web document, which is assumed to be replicated among n different servers, into n

requests such that any k replies are sufficient to reconstruct the whole page. Hence, the

system will work properly if at least k servers work properly. Hence the reliability of this

fault tolerant system is a k-out-of-n property. A property X is a universal property when

any system that has the property X contains components all having the property X. An

example of a universal property is the safety property. A system is safe only if all

components in the system are safe. The turn-around time is another example of a

universal decomposition property. “The system turn-around time must be less than 1500

msec” is universally decomposed into each component in the system. Hence, each

component in the system has property: “turn-around time must be less than 1500 msec”.

 40

A property X is a component-specific property when any system that has the property X

contains a particular component having the property X. For example, usability and

presentation of a system are decomposed into the usability and the presentation of a user-

interface component in the system.

For a heterogeneous decomposition, an at-least-one-X property and a universal-X

property are identified. A property Y is an at-least-one-X property when any system that

has the property Y contains at least one component having the property X. A property Y

is a universal-X property when any system that has the property Y contains components

all having the property X. For example, in scientific visualization, the requirement for the

frame rate is mapped into the requirements for the throughputs of all the individual

components in the system: the data source, the filter, the mapper, and the renderer. In this

case, frame rate is a universal-X property, where X is property throughput.

4.3.2 Domain Specific Decomposition Rules (DSDR)

Because domain independent decomposition rules are abstract rules over different

domains, they may not strong enough for a specific domain in decomposing system non-

functional requirements. It is necessary to built domain specific decomposition rules for

individual domains and to make them one part of the domain model. The domain specific

rules can be created manually by a domain expert or automatically by use of tools.

Therefore, the domain model contains information for decomposing system functional

requirements as well as system non-functional requirements. The following two examples

show the domain specific decomposition rules in a Bank ATM system.

A bank ATM system, shown in the Figure 4.1, consists of one ATM, one

customer validation server, one transaction server manager, two transaction servers, and

one account database. The domain specific decomposition rules of throughput for this

system could be: the throughput of the customer validation server should be equal or

greater than the system throughput; the throughput of the transaction server manager

should be equal or greater than the system throughput; the throughput of the transaction

server should be equal or greater than one half of the system throughput assuming the

 41

load is equally balanced between two Transaction Servers; the throughput of the account

database should be equal or greater than the system throughput. Compared to the domain

independent decomposition rules of throughput, which is: the throughput of the

individual component is greater or equal to the system throughput, the domain specific

decomposition rules are stronger in decomposing the system throughput into individual

components.

 In creating the domain dependent decomposition rules of turn-around time for the

bank ATM system, the critical use cases are used to decompose the system requirement

on turn-around time. Critical use cases are those that are important to the operation of the

system, or that are important to a system property observed by the user [12]. For each

critical use case, one can focus on the scenarios that are executed frequently and on those

that are critical to the user’s perception of performance for some systems.

In the bank ATM system, there is several use cases: “customer validation”,

“deposit money”, “withdraw money”, “transfer money”, and “check balance”. Assume in

this application domain, the critical use cases are “deposit money”, “withdraw money”,

and “transfer money”.

The critical use cases are described by sequence or collaboration diagrams. Given

the system turn-around time, the budget of the turn-around time assigned to individual

interfaces of the components is determined based on the sequence of message flow. The

assignment of turn-around time budget to the individual interfaces of the components

could be equal or unequal. If it is unequal, the weight of the turn-around time for each

interface needs to be determined based on the domain knowledge.

Figure 4.2 shows the sequence diagram of the deposit money use case. There are

in total six operations on the component interface: deposit money on ATM, login account

on the transaction server manager, deposit money on the transaction server, get account

on the account database, save account on the account database, and exit account on the

transaction server manager. The decomposition of the system turn-around time for this

use case is: the turn-around time of the component should be less than 1/6 of system turn-

around time, here assuming the turn-around time is equally assigned into components

interfaces.

 42

Figure 4.1 The Bank ATM System

Figure 4.2 The Sequence Diagram of Deposit Money in the ATM System

ATM

Transaction
Server

Manager

Transaction
Server

Transaction
Server

Account
Database

Customer
Validation

Server

Return

saveAccount()

Return Account

Exit account successfully

Exit account

Deposit successfully

deposit()

Login account successfully

Return Transaction Server ID

Customer

Enter account type

:ATM :TransactionServerManager :DeluxeTransactionServer

loginAccount()

Enter deposit amount

Return

Return

exitAccount()

:AccountDatabase

deposit()

getAccount()

 43

4.4 The Category of Composition

 A composition can be classified into three categories based on its effects on the

non-functional properties of individual components: property-preserved composition,

property-non-preserved composition, and property-emerging composition.

4.4.1 Property-Preserved Composition

 In the property preserved composition, any property that holds at a component

level also holds at the system level. In a property-preserved composition, when a

component C0 with a property p0 integrates with a component C1 with a property p1,

properties p0 and p1 hold in the compound component CC1. When a component Ci+1

integrates with a compound component CCi (that is the composition of component 0 to i),

the properties p0, p1, …, pi and pi+1 hold in the compound component CCi+1. The design

task is, given a component Ci and a property pi, find a component Ci+1 and a mode of the

composition such that the composition of Ci and Ci+1 satisfy pi. The static non-functional

properties are preserved in composition. For example, in embedded systems, memory

consumption is an important issue. As a component A with memory consumption of x

bytes, which including the code and static data, composes with a component B with a

memory consumption of y bytes, the property “component A consumes x bytes memory”

still holds in the composition. The property-preserved composition is desired in system

composition.

4.4.2 Property-Non-Preserved Composition

 For property-non-preserved composition, the property of a component may not be

preserved in composition due to the interactions with other components or its

environment. For example, as a component composes with another component with

different security policy domains or the security policies are inconsistent, the security

level of either of the components can be compromised. As a component composes with

 44

an un-trusted or malicious component, it may lose it security property. The property-non-

preserved composition is not desired in system compositional reasoning.

4.4.3 Property-Emerging Composition

 In the property-emerging composition, a new property may emerge in the

composition of components. The new emerging property is not a property of any

component present in the composition. The emerging property is due to the interactions

among components. For example, as a deadlock-free component A composes with a

deadlock-free component B, it is possible that the composed system has deadlock if the

two components share some resources and access the shared resources in an improper

order.

4.5 The Composition Rules

The predictability of the component-based software system is critical to the

success of the component-based software development approach. In addition to the reuse

of implementation code, the properties of individual components need to be reused in

reasoning about the system properties. Therefore, a prediction model of the system non-

functional properties based on the properties of individual components is required.

In the UniFrame approach, the composition rules are used to predict or statically

validate the system non-functional properties based on the non-functional properties of

individual components. The composition rules are divided into domain independent rules

and domain specific rules.

4.5.1 Domain Independent Composition Rules (DICR)

Due to the causal link between the property of the system and the properties of

components in the system, it is assumed the property of the composed system depends on

the properties of components in the system. Different properties may follow different

 45

aggregation rules. For example, mass and energy follow the sum rule; temperature

follows the average rule; strength follows the minimum rule; the composition rules of

electrical resistance, electrical current and electrical voltage depend on the configuration

of components. Some of the domain independent composition rules are described in the

following sections.

4.5.1.1 The Minimum Rule

 The minimum rule describes the system property as the minimum of the

component properties:

P = min (p1, p2, …, pn), (4.10)

where P is the system property, and pi (i=1, 2, …, n) is the property of the ith component

in the system. For example, the composition of security follows the minimum rule. The

system security depends on the components with the minimum security.

4.5.1.2 The Maximum Rule

 The maximum rule describes the system property as the maximum of the

component properties:

P = max (p1, p2, …, pn), (4.11)

where P is the system property, and pi (i=1, 2, …, n) is the property of the ith component

in the system. For example, the composition of packet loss follows the maximum rule.

The packet loss of a network system depends on the network component with the

maximum packet loss.

 46

4.5.1.3 The Sum Rule

 The sum rule describes the system property as the sum of the component

properties:

P = sum (p1, p2, …, pn), (4.12)

where P is the system property, and pi (i=1, 2, …, n) is the property of the ith component

in the system. For example, the composition of the response time follows the sum rule.

The response time of a system equals the sum of the response time of the individual

components.

4.5.1.4 The Weighted Sum Rule

 The weighted sum rule describes the system property as the weighted sum of the

component properties:

P = w1p1 + w2p2 +…+ wnpn , (4.13)

where wi (i=1, 2, …, n) is a constant coefficient within the range of [0, 1]. For example,

the composition of maintainability follows the weighted sum rule. The maintainability of

a system equals to:

c1M1+c2M2+…+cnMn (4.14)

where

∑
=

=
n

j
j

i
i

LOC

LOC
c

1

 (i=1, 2, …, n), LOC=Lines of Code, and Mi is the maintainability

score of the ith component.

 47

4.5.1.5 The Product Rule

 The product rule describes the system property as the product of the component

properties:

P = p1×p2× …×pn , (4.15)

where P is the system property, and pi (i=1, 2, …, n) is the property of the ith component

in the system. For example, the availability (or reliability) follows the product rule if it is

assumed the availabilities (or reliabilities) of the individual components are statistically

independent.

4.5.2 Domain Specific Composition Rules (DSCR)

 The domain independent rules are abstract rules and cannot be applied directly in

a specific domain. The domain specific composition rules are derived or instantiated from

the domain independent rules and incorporate the domain specific knowledge. The

domain specific rules can be generated manually by domain experts or automatically by

use of tools. The system non-functional properties are statically validated using the

domain specific composition rules during the system validation phase. The following

example shows how to create the domain specific composition rules for turn-around time

in a bank ATM system.

The turn-around time is a user-oriented property. The composition of turn-around

time is based on use cases. In this example, the composition rule of turn-around time for

the withdraw money use case is illustrated. As shown in the Figure 4.3, the sequence of

operations on component interfaces is: withdraw money on ATM, login account on the

transaction server manager, withdraw money on the transaction server, get account on the

account database, save account on the account database, and exit account on the

transaction server manager. Therefore, the composition rule of turn-around time for the

withdraw money use case is: TATsys (withdraw money) = TATatm (withdraw money) +

 48

TATtsm (login Account) + TATts (withdraw money) + TATadb (get account) + TATadb

(save account) + TATtsm (exitAccount).

Figure 4.3 The Sequence Diagram of Withdraw Money in the ATM system

4.6 Summary

 In this chapter, decomposition rules and composition rules are proposed. They are

divided into domain independent rules and domain specific rules. The decomposition

rules are used in factoring the system non-functional requirements into properties of

individual components, while the composition rules are used in predicting the properties

of a whole system based on the properties of individual components. In the next chapter,

the inter-component communication patterns will be discussed and their effect on the

composition and decomposition of non-functional properties will be investigated.

Return

saveAccount()

Return Account

Exit account successfully

Exit account

Withdraw successfully

withdraw()

Login account successfully

Return Transaction Server ID

Customer

Enter account type

:ATM :TransactionServerManager :DeluxeTransactionServer

loginAccount()

Enter withdraw amount

Return

Return

exitAccount()

:AccountDatabase

withdraw()

getAccount()

 49

5. EFFECT OF INTER-COMPONENT COMMUNICATION PATTERNS ON
SYSTEM COMPOSITION AND DECOMPOSITION

5.1 Introduction

In the previous chapter, the composition and decomposition rules of non-

functional properties are discussed. However, these composition and decomposition rules

did not consider the interactions between components.

A component may use different communication patterns to interact with different

components or the same component at different times. The communication patterns

between components can be invocation-based, event-based, or stream-based. The reason

to study the inter-component communication patterns is to find the composition and

decomposition rules associated with the individual communication patterns.

5.2 Invocation-Based Communication

The attributes of an invocation-based communication pattern are that the two

components be aware of each other’s identity and the communication be in a unicast

mode. The invocation-based component interaction mode is widely supported by the

current distributed component models, such as Java [5], CORBA [6], and .Net [7]. There

are three subcategories of invocation-based communication: asynchronous one-way

invocation, synchronous two-way invocation, and asynchronous two-way invocation.

They are described in the following sections.

 50

5.2.1 Asynchronous One-Way Invocation

In the one-way invocation, as shown in Figure 5.1, the client component returns

immediately after it has sent a request to the server. The sever component returns no

response to the client component. This invocation pattern could achieve a better

throughput than other patterns. However, this one-way mode is inadequate for systems

demanding a high degree of reliability because there is no way for the sender to know

whether the call was successful or not.

5.2.2 Synchronous Two-Way Invocation

In a two-way synchronous invocation, as shown in Figure 5.2, when the client

component sends a request to a server component, the client component blocks and waits

for a response from the server component. If single-threaded, the client component is

unable to perform any other work while it waits for a response.

5.2.3 Asynchronous Two-Way Invocation

In a two-way asynchronous invocation, the calling client can return immediately

and serve subsequent calls after it invokes the server. Therefore, an asynchronous call can

lead to a better throughput than the corresponding synchronous call. There are two

variations of the asynchronous two-way invocation pattern: polling and call back. In the

polling mode, as shown in Figure 5.3, the client component is not blocked after sending a

request. It can continue to processes subsequent requests. The client component will poll

the result from the server at a later time. In the call back mode, as shown in Figure 5.4,

after sending a request, the client component can continue to process the subsequent

requests. The server component will send the result back to the client when the server

finishes the service of the request. For example, CORBA Asynchronous Method

Invocation (AMI) provides polling and callback. In the polling mode, the invocation

returns an object reference that can be queried at any time to obtain the status of the

outstanding request. In the callback mode, a client passes a callback object reference as

 51

part of the invocation. When the reply is available, that callback object is invoked with

the data of the reply. In both cases, the client will not block in making requests.

An asynchronous invocation can lead to a better throughput than the

corresponding synchronous invocation. The synchronous invocation is more suitable

when an application needs reliable request processing and error handling. An

asynchronous invocation contains a more complex programming model than the

synchronous invocation model. The asynchronous model provides more services, such as

message routing, reliable message delivery, message priority and ordering, etc., at the

cost of a greater application complexity and more work on the part of developers.

An invocation-based communication pattern only allows a one-to-one

communication model and forces a tight coupling between the involved parties. It does

not scale well for large Internet-wide systems because of the large number of potential

communication partners, and the dynamic nature of all interactions with new clients

joining the system and servers failing. The event-based communication pattern is

designed for the large-scale distributed systems.

Figure 5.1 The Asynchronous One-Way Invocation-Based
Communication Pattern (Pattern No. 1)

Figure 5.2 The Synchronous Two-Way Invocation-Based
Communication Pattern (Pattern No. 2)

C1 C2

C1 C2

 52

Figure 5.3 The Asynchronous (Polling) Two-Way Invocation-Based
Communication Pattern (Pattern No. 3)

Figure 5.4 The Asynchronous (Callback) Two-Way Invocation-Based
Communication Pattern (Pattern No. 4)

5.3 Event-Based Communication

The event-based communication model represents an emerging paradigm for

asynchronously interconnecting components that comprise an application in a potentially

distributed and heterogeneous environment, such as large-scale Internet services and

mobile programming environments.

The attributes of an event-based communication pattern are that the two

components not be aware of each other’s identity. An event-based communication is

essentially asynchronous, which results in a less tightly coupled communication

relationship between the application components compared to the traditional

request/response communication model. Event-based communication provides a one-to-

many or many-to-many communication pattern. The CORBA Event Service and Java

Messaging Service (JMS) are examples of the event-based communication model. Event-

based communication includes the following styles:

♦ Push style: as shown in Figure 5.5, suppliers are initiators of events and consumers

passively wait to receive events. An event broker plays the role of a notifier in this

approach.

C1 C2

C1 C2

 53

♦ Pull style: as shown in Figure 5.6, consumers are initiators of events and suppliers

passively wait to get events pulled from them. An event broker plays the role of a

producer in this case.

♦ Push-and-pull style: as shown in Figure 5.7, suppliers push the events to the event

brokers and the consumers pull events from the event brokers. Both suppliers and

consumers are active. An event broker plays the role of a queue in this approach.

♦ Pull-and-push style: as shown in Figure 5.8, event brokers pull events from the

suppliers and then push them to the consumers. Both suppliers and consumers are

passive. An event broker functions as an active agent in this method.

Figure 5.5 The Push Style Event-Based Communication Pattern (Pattern No. 5)

Figure 5.6 The Pull Style Event-Based Communication Pattern (Pattern No. 6)

Figure 5.7 The Push-and-Pull Style Event-Based Communication Pattern
(Pattern No. 7)

Producer Consumer

Producer Consumer

Producer Consumer

 54

Figure 5.8 The Pull-and-Push Style Event-Based Communication Pattern
(Pattern No. 8)

5.4 Stream-Based Communication

The attributes of a stream-based communication pattern are that it deals with the

continuous media data and the dataflow is unidirectional. There is generally a single

source and one or more sinks (unicast or multicast). Simple stream type consists of a

single flow of data, e.g., audio or video. Complex stream type consists of multiple data

flows, e.g., stereo audio or combination of audio/video. Typically, it uses the UDP

transport protocol.

Message-oriented communication may occasionally happen and usually has high-

level semantics. It is sensitive to the loss of messages. However, its requirement on the

delivery latency is moderate, as long as it is within reasonable bounds. In contrast, the

stream-based communication may constantly occur. Its semantic level usually is

relatively low and the drop of data units up to several is usually tolerable. But it is

sensitive to the delivery latency and variation of the delivery latency.

Stream-based communication consumes more network bandwidth compared to

bursty data communication. Therefore, the network component would be the potential

bottleneck of the system. The QoS of the network component would play an important

role in the system QoS, so it cannot be neglected.

There is a need to specify the QoS of stream-based communication and the

translation to resource reservations in the underlying communication system. There is no

standard way of specifying QoS, describing resources, and mapping QoS specifications

to resource reservations.

Producer Consumer

 55

Figure 5.9 The Stream-Based Communication Pattern (Pattern No. 9)

5.5 The Factors Associated with Individual Communication Patterns

 In addition to the four types of communication patterns discussed in the previous

sections, the factors that are associated with individual inter-component interaction are

also important and discussed in the following subsections.

5.5.1 Transport Protocols

The components may choose different transport protocols, such as TCP and UDP

to deliver its services. TCP uses three-way handshake to establish a connection and

provides a sequence number for their interactions, an acknowledgement (ACK) and a

congestion control to make the data transfer reliable. UDP has no connection

establishment overhead and eliminates the TCP ACK packets and the retransmission, so

UDP is faster and has better throughput. UDP does not provide a sequence number,

congestion control or error control, so it is unreliable. Wireless middleware, real-time

middleware, and multimedia middleware normally use the UDP/IP protocol for

performance reasons. The protocol chosen for a particular data type is, in large part,

determined by the trade off between the speed and the accuracy of data communication.

Due to the fact that TCP is a reliable service, delays will be introduced whenever a bit

error or packet loss occurs. This delay is caused by retransmission of the broken packet,

along with any successive packets that may have already been sent. This can be a large

source of jitter. The TCP transport protocol is suitable for RPC and object invocation, but

not for some other inter-component interactions, such as streaming media. On the

contrary, the UDP transport protocol is suitable for a streaming communication pattern.

Source Sink

 56

5.5.2 Component Access Patterns

A component can be accessed by an individual request or multiple simultaneous

requests. As seen from the Figure 5.1, in the light load zone, as the number of concurrent

requests increases, the throughput grows almost linearly and the response time remains

relatively constant. In the heavy load zone, the throughput remains relatively constant,

but the response time increases proportionally with the number of client requests. At

some point in the buckle zone, one of the resources such as the disk bandwidth becomes

exhausted, causing the throughput to degrade and the response time to increase

drastically.

Figure 5.10 A Typical Relationship Between the Load, the Response Time and the

Throughput (from [21])

5.5.3 Sequence of Component Interactions

Some system properties are not symmetrical with respect to the sequence of

component interaction. For example, the turnaround time from A → B → C may differ

from C → B → A, based on the actual path in each direction. The priority scheme of a

composed system is not symmetrical either. For example, suppose component A and B

service incoming requests based on priority and they use different priority schemes:

component A assign higher priority for subscribed users and lower priority for public

Number of Concurrent Users
(Load)

Buckle Zone

Light Load

Heavy Load

Resource Saturated

Resource
utilization

Throughput

Response time

 57

users; component B assigns higher priority for small sized data files and lower priority

for large sized data files. If clients call component A and then component A calls

component B, then the overall priority scheme is determined by component B. That

means a request for a small data file get fast response and a request for a large data file

gets slow response no matter whether the user is subscribed or public. On the other hand,

if clients call component B and then component B calls component A, the overall priority

scheme is determined by component A.

5.5.4 Data Type and Data Size

Different types of data can be sent to a component, such as short, long, struct,

object, etc. A complex data type may need more time for marshaling or un-marshaling

resulting in additional overhead.

5.6 Composition of Communication Patterns

 This section describes complex communication patterns composed from basic

communication patterns and the composition of communication patterns in real

applications.

5.6.1 Composition of the Basic Communication Patterns

 The basic communication patterns described in 5.2, 5.3 and 5.4 are elements in

building complex communication patterns. A complex communication pattern can be the

result of a certain kind of composition of the basic communication patterns.

Figure 5.11 shows the sequential composition of two basic one-way invocation-

based communication patterns. Figure 5.12 shows the sequential composition of two

synchronous two-way invocation-based communication patterns. In this composite

communication pattern, the receiver of the first communication pattern, C2, is the initiator

of the second communication pattern. Figure 5.13 shows the sequential composition of

 58

two asynchronous invocation-based communication patterns. In this composite

communication pattern, the component C1 and C2 do not block themselves as they invoke

the subsequent component (C2 and C3). Hence, the performance of this pattern is better

than the performance of the pattern No. 11. Figure 5.14 shows the sequential composition

of synchronous two-way invocation-based communication pattern and asynchronous two-

way invocation-based communication pattern. In this composite communication pattern,

the component C2 does not block itself as it invokes the component C3. Therefore,

compared to the pattern No. 11, the performance of this pattern is better. Figure 5.15

shows the sequential composition of asynchronous two-way invocation-based

communication pattern and synchronous two-way invocation-based communication

pattern. In this composite communication pattern, the component C1 does not block itself

as it invokes the component C2. Therefore, its performance is better than the performance

of the pattern No. 11. Figure 5.16 shows the filter-style composition of two synchronous

two-way invocation-based communication patterns. In this composite communication

pattern, the first communication pattern is activated more frequently than the other one.

In another words, the first communication pattern can filter out some requests, which

cannot reach the second communication pattern. Figure 5.17 shows the forward

sequential composition of synchronous two-way invocation-based communication pattern

and asynchronous one-way invocation-based communication pattern. In this composite

communication pattern, the response is directly forwarded to the component C1 instead of

the component C2 from the component C3. Figure 5.18 shows the partial sequential

composition of two synchronous two-way invocation-based communication patterns. In

this composite communication pattern, the two communication patterns have the same

initiator of the communication, which is the component C1. Figure 5.19 shows the partial

sequential composition of asynchronous two-way invocation-based communication

patterns. This composite communication pattern can potentially improve the performance

of the component C1. Figure 5.20 shows the partial sequential composition of

synchronous two-way invocation-based communication pattern and asynchronous two-

way invocation-based communication pattern. This composite communication pattern has

the potential to improve the performance of the component C1. Figure 5.21 shows the

 59

partial sequential composition of asynchronous two-way invocation-based

communication pattern and synchronous two-way invocation-based communication

pattern. This composite communication pattern has the potential to improve the

component C1’s performance. Figure 5.22 shows the parallel composition of two

synchronous two-way invocation-based communication patterns. In this composite

communication pattern, the two communication patterns are activated simultaneously.

Figure 5.23 shows the partial sequential composition of two synchronous two-way

invocation-based communication patterns. In this composite communication pattern, the

two communication patterns have the same receiver, which is the component C3. Figure

5.24 shows the partial sequential composition of two synchronous two-way invocation-

based communication patterns between the same two components. In this composite

communication pattern, the two communication patterns have the same initiator and

receiver and are activated at different times. Figure 5.25 shows the fault tolerant

composition of two synchronous two-way invocation-based communication patterns. In

this composite communication pattern, if one of the communication patterns is broken,

the other communication pattern is activated. Figure 5.26 shows the alternative

composition of two synchronous two-way invocation-based communication patterns. In

this composite communication pattern, one of the two communication patterns is

activated, which depends on the request.

Figure 5.11 The Sequential Composition of Two One-Way Invocation-Based
Communication Patterns (Pattern No. 10)

Figure 5.12 The Sequential Composition of Two Synchronous Two-Way Invocation-

Based Communication Patterns (Pattern No. 11)

C1 C2 C3 1 2

C1 C2 C3
1 2

3 4

 60

Figure 5.13 The Sequential Composition of Two Asynchronous (Callback) Two-Way
Invocation-Based Communication Patterns (Pattern No. 12)

Figure 5.14 The Sequential Composition of Synchronous Two-Way Invocation-Based
Communication Pattern and Asynchronous (Callback) Two-Way Invocation-Based

Communication Pattern (Pattern No. 13)

Figure 5.15 The Sequential Composition of Asynchronous (Callback) Two-Way
Invocation-Based Communication Pattern and Synchronous Two-Way Invocation-Based

Communication Pattern (Pattern No. 14)

Figure 5.16 The Filter-Style Composition of Two Synchronous Two-Way Invocation-
Based Communication Patterns (Pattern No. 15)

C1 C2 C3
1 2

3 4

C1 C2 C3 1 2

3 4

C1 C2 C3
1 2

3 4

C1 C2 C3
1 2

3 4

 61

Figure 5.17 The Forward Composition of Synchronous Two-Way Invocation-Based
Communication Pattern and Asynchronous One-Way Invocation-Based Communication

Pattern (Pattern No. 16)

Figure 5.18 The Partial Sequential Composition of Two Synchronous Two-Way
Invocation-Based Communication Patterns (Pattern No. 17)

Figure 5.19 The Partial Sequential Composition of Two Asynchronous (Callback) Two-
Way Invocation-Based Communication Patterns (Pattern No. 18)

Figure 5.20 The Partial Sequential Composition of Synchronous Two-Way Invocation-
Based Communication Pattern and Asynchronous (Callback) Two-Way Invocation-

Based Communication Pattern (Pattern No. 19)

C1

C2

C3

1 2

3

C2 C1 C3
1 3

4 2

C2 C1 C3
1 3

4 2

C2 C1 C3
1 3

4 2

 62

Figure 5.21 The Partial Sequential Composition of Asynchronous (Callback) Two-Way

Invocation-Based Communication Pattern and Synchronous Two-Way Invocation-Based
Communication Pattern (Pattern No. 20)

Figure 5.22 The Parallel Composition of Two Synchronous Two-Way Invocation-Based
Communication Patterns (Pattern No. 21)

Figure 5.23 The Partial Sequential Composition of Two Synchronous Two-Way
Invocation-Based Communication Patterns (Pattern No. 22)

Figure 5.24 The Partial Sequential Composition of Two Synchronous Two-Way
Invocation-Based Communication Patterns (Pattern No. 23)

C1

C2

1

2

4

3

C2 C1 C3 1 3

4 2

C2 C1 C3
1 1

2 2

C1 C2 C3
1 3

4 2

 63

Figure 5.25 The Fault-Tolerant Composition of Two Synchronous Two-Way Invocation-
Based Communication Patterns (Pattern No. 24)

Figure 5.26 The Alternative Composition of Two Synchronous Two-Way Invocation-
Based Communication Patterns (Pattern No. 25)

5.6.2 Composition of Communication Patterns in Real Applications

In the previous section, the compositions of the basic communication patterns are

described. Based on the basic and composite communication patterns, a system can be

built by composing the basic and composite communication patterns in a certain manner.

Figure 5.27 shows an example of the communication pattern 17. The client first

sends a request with the server name to the DNS server. After getting the IP address of

the Web server from the DNS server, the client then sends the request for the web page to

the Web server. Eventually, the Web server responds to the client with the requested web

page. In this example, the client initially contacts the DNS server using the two-way

synchronous communication pattern, and then contacts with the Web server using the

two-way synchronous communication pattern.

Figure 5.28 shows the example of the composition of communication pattern 17

and communication pattern 2. In this example, the ATM initially sends user’s account

number and pin number to the customer validation server to validate the user. If the

validation is successful, the ATM then sends the account number to the transaction server

manager. After getting the transaction server information from the transaction server

manager, the ATM finally sends the user transaction request to the transaction server and

C2 C1 C3
1 3

4 2

C2 C1 C3
1 1

2 2

 64

gets the result from the transaction server. The communication patterns between the

ATM and the customer validation server, the transaction server manager, the transaction

server are synchronous two-way invocation and have the same initiator, which is the

ATM.

Figure 5.29 shows the example of communication pattern No. 15. In this example,

the Web client sends a request to the Web proxy server. If the requested Web object is

cached in the Web proxy server, the Web proxy server returns the Web object to the Web

client. Otherwise, the Web proxy server sends the request for the Web object to the

remote Web server on behalf of the Web client. When the Web proxy server receives the

response from the Web server, it returns it to the Web client. A request for an object that

is cached in the Web proxy server is filtered and is not forwarded to the Web server.

Figure 5.30 shows an example of an online shop selling music over the network

[34]. In such a scenario, multiple service providers maintain databases of digital music

tracks. A client wanting to buy music browses the tracks available at a particular on-line

record service provider and can listen to streamed samples of tracks before paying for and

downloading high-quality versions of the files onto their local computers.

From the above description, some of the high-level components of a record

service system can be identified. The on-line record store is accessed through a

component that maintains the database of information about the music in the store. The

music itself is stored in one or more media servers. Components can be instantiated on

these media servers to stream a low-resolution preview of the music or to download the

file to a client’s local machine. The client program is made up of components that allow

the user to visually browse the contents in the store, receive and play streams of audio,

and download purchased files onto the local machine. Other components may be used to

stream audio data to and from disk or audio devices and to process audio streams, to

convert between formats for example.

These components interact in different ways, and each separate usage involving

the same interaction type may need different qualities of service and levels of security.

The client browses the contents of the music store by invoking request/reply operations

over a reliable connection. When requesting a preview of a track, the client will receive a

 65

stream of continuous media, which may not have to be reliable but requires guarantee

about the bandwidth and the jitter. When requesting a purchase of one or more files, the

client uses a request/ reply transaction over a reliable connection; however, unlike the

connection used for browsing, the connection used for requesting a purchase must also be

secure. Finally, the music files are transferred to the client over a network that efficiently

transfers large amounts of data; this interaction also requires a reliable and a secure

connection.

Figure 5.31 shows an example of a real-time content-based media access [35]. At

the lowest level of the hierarchy, the media streams are filtered and transformed, e.g.,

transforming a video stream from color to black and white only, reducing the spatial or

the temporal resolution. The transformed media streams are then fed to feature extraction

algorithms. Feature extraction algorithms operate on samples or segments from the

transformed media streams and calculate features such as the texture coarseness, the

center of gravity, and the color histogram. Results from feature extraction algorithms are

generally reported to classification algorithms that are responsible for detecting higher

level domain concepts such as a “person” occurring in a media stream.

The interaction patterns in this example use the event-based model. Event based

systems rely on the presence of an event broker. The responsibility of the event broker is

to propagate events from the event producers to event consumers, generally in a many-to-

many manner. An event produced by components at the bottom of the hierarchy is likely

to be interesting to a large number of other components. A push style interaction fits one-

many communication well, and the need for an explicit request message, introducing

delay, is eliminated. From a resource consumption viewpoint it is important to execute

complex and time-consuming algorithms only when absolutely necessary. This reasoning

suggests that such algorithms should be demand driven, pulled by other components. For

example, the classification component is allowed to pull the feature extraction

component.

A classification component consumes events produced by other feature extraction

components and/or classification components and generates events that again may be

 66

consumed by other classification components, or reported directly to a user, or stored in a

database as indexing information.

The effect of the inter-component communication patterns on the composition is

discussed in the next section.

Figure 5.27 The Web Server Example

Figure 5.28 The Bank ATM Example

Figure 5.29 The Web Proxy Server Example

Client Domain
Name server

Web
Server

1

2

3

4

Client Web Proxy
Server

Web
Server

1 2

3 4

5 6

ATM Customer
Validation

Server

1

2

3

4

Transaction
Server

Manager

Transaction
Server

 67

Figure 5.30 The On-Line Music Shop

Figure 5.31 The Real-Time Content-Based Media Access

Client

Record
Shop server

Media
Store server

Media
stream
source

Filtering Filtering

Feature
extraction

Feature
extraction

Classification

Classification

Filtering

Feature
extraction

Media
stream
source

End consumer

 68

5.7 The Composition Rules of Response Time and Throughput under
Different Communication Patterns

In this section, the composition rules of response time and throughput under

different communication patterns and computation models are proposed. The

communication patterns studied are patterns No. 2, 3, 11, 12, 13, 14, 17, 18, 19, and 20.

The computation models considered are single threaded, multi-threaded, thread-per-

request and thread pool.

In order to empirically validate the proposed composition rules, experiments were

conducted on four Sun SPARC 5 workstations. These four workstations are connected

via a 10 Mbit Ethernet. The components are implemented with C and BSD sockets. Each

component performs some computation after receiving any request from another

component. The throughput of individual components, or the system, is measured by

sending a certain amount of requests to the components, or the system, and recording the

time it takes to complete all these requests. The average response time of a request for

individual components, or the system, is measured by sending requests one by one every

certain amount of time, and recording the start and the end times of each request.

5.7.1 The Composition Rules of the Communication Pattern No. 2

The communication pattern No. 2 is a synchronous two-way invocation. Two

types of components are considered: single threaded and multi-threaded.

5.7.1.1 Single-Threaded Components

The queuing model for a single-threaded component consists of a waiting queue

and a thread in execution. Let the length of queue be m and the demand (CPU) time for a

request be Td. Further assume the request is served using the first-come-first-served

approach and the component is in the steady state, i.e., the rate of an arrival of a request is

equal to the rate of the completion of a request. When a new request comes, assume there

are m requests in the waiting queue and no request being serviced. The new request has to

 69

wait for mTd seconds before being served. Thus, the mean response time for the new

request is:

Tr = mTd + Td = (m+1) Td (1)

For a system with a synchronous invocation, let, m1, m2 denote the queue size of

component 1 and component 2 respectively and Td1, Td2 denote the demand times at

component 1 and component 2, respectively. Let Tr1, Tr2 denote the response times for a

request in component 1 and component 2, respectively. If m1=m2, a new request to the

system has to wait for m1 (Td1+Td2) seconds before being served and the service time for

the new request is Td1+Td2. Hence, the mean response time for the new request is:

Tr = m1 (Td1 + Td2) + (Td1+Td2) = Tr1+ Tr2 (if m1=m2) (2)

Based on equation (2), the response time of the composed system equals the sum

of the response times of the two individual components when the two components

interact synchronously.

For the composed� V\VWHP�� OHW� �� 1, 2 denote the throughputs of the composed

system, component 1, and component 2, respectively. Based on Little’s law [36], we

have:

m1+1 = Trλ = (Tr1+ Tr2) λ = (
2

2

1

1 11

λλ
+++ mm)λ (3)

21

2

1

1

1

111

λλλ +
++=

m

m (4)

21

111

λλλ
+= (If m1=m2) (5)

Equation (5) indicates that the reciprocal of the throughput of the composed

system equals the sum of the reciprocals of the throughputs of individual components

when the two components communicate using synchronous mode.

 70

 Table 5.1 shows the experimental results of a synchronous two-way

communication pattern with single threaded components as the participants. It can be

seen that the proposed composition rules accurately predict the throughput and response

time of a composed system of two single threaded components communicating using

synchronous two-way invocation.

Table 5.1 Experiment Results of the Communication Pattern No. 2 with Single Threaded

Components as the Participants

 Component 1 Component 2 Synchronous

Measured throughput (reqs/sec) 0.206 0.406 0.137

Predicted throughput (reqs/sec) 0.137

Demand time (sec) 4.846 2.463

Measured response time (sec) 52.134 26.219 81.272

Predicted response time (sec) 78.353

Measured throughput (reqs/sec) 0.406 0.206 0.136

Predicted throughput (reqs/sec) 0.137

Demand time (sec) 2.464 4.845

Measured response time (sec) 26.179 52.442 79.511

Predicted response time (sec) 78.621

5.7.1.2 Multi-Threaded Components

 In this section, the components participating the synchronous two-way

communication patterns are assumed to be multi-threaded.

The queuing model for a multi-threaded component with a thread pool consists of a

waiting queue and a service center with a fixed number of threads. Let the queue length

be m and the number of threads in the pool be n. Let Td denote the CPU demand time of a

request, assuming no parallel operations, such as I/O. When a new request arrives, let

there be m (m=k* n) requests in the queue, and no request being served. Then the

response time for the new request is the time spent at the component by the preceding m

requests in the queue plus the time spent at the component (shared by possibly n active

 71

threads) by the new request:

Tr = mTd + nTd = (m+n)Td (6)

 Multi-threaded components can overlap the processing of requests in the

synchronous communication pattern. When some threads are blocked in waiting for

response, the other unblocked threads can continue to serve the incoming requests.

Therefore, multi-threaded components in the synchronous two-way communication

pattern can achieve a certain degree of asynchronous effect. To quantify the degree of the

asynchronous effect of multithreaded components in synchronous communication

patterns, the degree of asynchronous effect are proposed in this study and defined as:

)_()_(

)_(

syntotallyTasyntotallyT

syntotallyTT

putput

putput

−

−
=φ , (7)

where Tput denotes the throughput of the synchronous two-way communication pattern

with multi-threaded components as the participants. Tput(totally_syn) denotes the

throughput of the synchronous two-way communication pattern with no asynchronous

effect and can be calculated based on equation (5). Tput(totally_asyn) denotes the

throughput of the asynchronous two-way communication pattern and equals to the

minimum throughput of the two participating components.

 Table 5.2 and Table 5.3 show the experimental results of synchronous two-way

communication patterns with multi-threaded components as the participants. Table 5.2

shows the experimental results of synchronous two-way communication pattern between

two multithreaded (4 threads) components. The two cases of the communication pattern

shown in Table 5.2 have asynchronous degree of 0.23 and 0.10 respectively. Table 5.3

shows the experimental results of synchronous two-way communication pattern between

two multithreaded (10 threads) components. The two cases of the communication pattern

shown in Table 5.3 have asynchronous degree of 0.75 and 0.41 respectively. It can be

seen that the number of threads provided by a component and the invocation order

 72

between components can affect the asynchronous degree of multi-threaded components

in synchronous two-way communication pattern. It is challenging to obtain an empirical

formula to calculate the asynchronous degree of a communication pattern based on the

factors such as the number of threads provided by the participating components, the

invocation order, and so on. With the calculated degree of asynchronous effect, the

throughput and the response time of the communication pattern can be predicted.

Table 5.2 Experiment Results of the Communication Pattern No. 2 with Multi-Threaded
(4 Threads) Components as the Participants

 Component 1 Component 2 Synchronous

Measured throughput (reqs/sec) 0.206 0.406 0.153

Predicted throughput (reqs/sec) 0.137

Demand time (sec) 4.851 2.463

Measured response time (sec) 60.713 29.323 87.719

Predicted response time (sec) 90.036

Measured throughput (reqs/sec) 0.406 0.206 0.144

Predicted throughput (reqs/sec) 0.137

Demand time (sec) 2.466 4.845

Measured response time (sec) 30.032 60.660 85.282

Predicted response time (sec) 90.692

Table 5.3 Experiment Results of the Communication Pattern No. 2 with Multi-Threaded
(10 Threads) Components as the Participants

 Component 1 Component 2 Synchronous

Measured throughput (reqs/sec) 0.206 0.406 0.189

Predicted throughput (reqs/sec) 0.206

Demand time (sec) 4.846 2.463

Measured response time (sec) 72.837 37.311 94.591

Predicted response time (sec) 97.468

Measured throughput (reqs/sec) 0.406 0.206 0.165

Predicted throughput (reqs/sec) 0.206

Demand time (sec) 2.464 4.845

Measured response time (sec) 37.142 74.466 86.855

Predicted response time (sec) 86.785

 73

5.7.2 The Composition Rules of the Communication Pattern No. 3

 The communication pattern No. 3 is an asynchronous (callback) two-way

invocation. Two types of components are considered: single threaded and multi-threaded.

5.7.2.1 Single Threaded Components

If component 1 is the bottleneck, i.e., two throughputs satisfy λ1<λ2, then in the

steady state, the queue of component 1 is full and the queue of component 2 is empty.

When a new request arrives, let there be m requests in the queue of component 1; no

request being served by component 1; no request in the queue of component 2; and one

request being served by component 2. The response time for the new request is the

summation of the time it spends in component 1, including the time required by the m

preceding requests in the queue and the service time needed in component 1, and the time

spent in component 2. This time is given by the following equation:

Tr = m1Td1 + Td1 + Td2 = Tr1 + Td2 (8)

Similarly, if component 2 is the bottleneck, i.e., λ1>λ2, then at the steady state, the

queue of component 1 is empty and the queue of component 2 is full. When a new

request arrives, let there be no request at the queue of component 1; no request being

served by component 1; m2 requests in the queue of component 2; and no request being

served by component 2. The response time of the new request is the summation of the

time it spends in component 2 plus the time required by the preceding m2 requests and the

time spent in component 1 in phase-2 (a state when the thread in component 1 gets a

reply from component 2) by the new request. This time is given by the following

equation:

Tr = m2Td2 + Td2 + Td1_phase2 = Tr2 + Td1_phase2 (9)

 74

Equations (8) and (9) indicate that the response time of the composed system is less than

the sum of the response time of the two individual components when the two components

interact asynchronously.

 For the asynchronous communication pattern, the two components are fully

GHFRXSOHG��$W�VWHDG\�VWDWH��WKH�DUULYDO�UDWH�RI�D�QHZ�UHTXHVW�WR�FRPSRQHQW���� 11) equals

WKH� GHSDUWXUH� UDWH� RI� FRPSOHWHG� UHTXHVWV� IURP� FRPSRQHQW� �� � 12). The arrival rate of

UHTXHVWV�IRUZDUGHG�IURP�FRPSRQHQW���WR�FRPSRQHQW���� 21) equals the request departure

UDWH�RI�FRPSRQHQW���� 22����,W�LV�REYLRXV�WKDW� 11� � 21 DQG� 12� � 22. This indicates that the

throughput of the composed system with callback asynchronous communication patterns

equals to the minimum throughput of the two components.

� PLQ�� 1�� 2) (10)

 Table 5.4 shows the experimental results of an asynchronous two-way

communication pattern with single threaded components as the participants. It can be

seen that the proposed rules (8)-(10) provide good accuracy in predicting the throughput

and the response time of the composed system.

Table 5.4 Experiment Results of the Communication Pattern No. 3 with Single Threaded
Components as the Participants

 Component 1 Component 2 Asynchronous

Measured throughput (reqs/sec) 0.206 0.406 0.206

Predicted throughput (reqs/sec) 0.206

Demand time (sec) 4.846 2.463

Measured response time (sec) 52.134 26.219 56.838

Predicted response time (sec) 54.597

Measured throughput (reqs/sec) 0.406 0.206 0.204

Predicted throughput (reqs/sec) 0.206

Demand time (sec) 2.464 4.845

Measured response time (sec) 26.179 52.442 53.522

Predicted response time (sec) 53.673

 75

5.7.2.2 Multi-Threaded Components

For multi-threaded components, let Tr1 and Tr2 be the response times of

component 1 and component 2 respectively, and Td1 and Td2 be the demand times of

request at component 1 and component 2, and n1 and n2 be the numbers of threads in the

pools of component 1 and component 2, respectively. Following the same analysis as in

the case of single-threaded components, when component 1 is the bottleneck (λ1<λ2), the

average system response time is:

Tr = Tr1 + n2Td2 (11)

If component 2 is the bottleneck (λ1>λ2), the system response time of a request can be

written as:

Tr = Tr2 + n1Td1_phase2 (12)

For the asynchronous communication pattern, the system throughput for multi-

threaded components has the same composition rule as the single-threaded components,

as indicated in equation (10).

Table 5.5 and Table 5.6 show the experimental results of an asynchronous two-

way communication pattern with multi-threaded components as the participants. It can be

seen from Table 5.5 and Table 5.6 that the predicted throughput and response time based

on the proposed composition rules are close to the measured throughput and response

time. The errors in predicting the throughput and the response time are within 6.2% and

8.1% respectively.

 76

Table 5.5 Experiment Results of the Communication Pattern No. 3 with Multi-Threaded
(4 Threads) Components as the Participants

 Component 1 Component 2 Asynchronous

Measured throughput (reqs/sec) 0.206 0.406 0.206

Predicted throughput (reqs/sec) 0.206

Demand time (sec) 4.851 2.463

Measured response time (sec) 60.713 29.323 69.422

Predicted response time (sec) 70.566

Measured throughput (reqs/sec) 0.406 0.206 0.200

Predicted throughput (reqs/sec) 0.206

Demand time (sec) 2.466 4.845

Measured response time (sec) 30.032 60.660 68.032

Predicted response time (sec) 65.591

Table 5.6 Experiment Results of the Communication Pattern No. 3 with Multi-Threaded

(10 Threads) Components as the Participants

 Component 1 Component 2 Asynchronous

Measured throughput (reqs/sec) 0.206 0.406 0.206

Predicted throughput (reqs/sec) 0.206

Demand time (sec) 4.846 2.463

Measured response time (sec) 72.837 37.311 90.179

Predicted response time (sec) 97.468

Measured throughput (reqs/sec) 0.406 0.206 0.194

Predicted throughput (reqs/sec) 0.206

Demand time (sec) 2.464 4.845

Measured response time (sec) 37.142 74.466 87.570

Predicted response time (sec) 86.785

 77

5.7.3 The Composition Rules of the Communication Pattern No. 11

 The communication pattern No. 11 is the sequential composition of two

synchronous two-way invocation-based communication patterns

 The composition rule for communication pattern No. 11 can be constructed based

on the basic communication patterns as: Component 1 ⊗ (Component 2 ⊗ Component 3),

where ⊗ denotes the synchronous two-way communication pattern.

 Table 5.7 shows the experimental results of the communication pattern No. 11

with multi-threaded (4 threads) components as the participants. It can be seen from Table

5.7 that the errors in predicting the throughput and the response time based on the

composition rule are within 37.5% and 30.9% respectively. Because the composition

does not consider the asynchronous degree of the communication pattern, the predicted

results are not as good as expected.

Table 5.7 Experiment Results of Communication Pattern No. 11 with Multi-Threaded

(4 Threads) Components as the Participants
 Component 1 Component 2 Component 3 Syn Syn

Measured throughput 0.406 0.306 0.206 0.152

Predicted system throughput 0.095

Demand time 2.464 3.271 4.845

Measured response time 30.032 40.078 60.783 147.136

Predicted system response time 130.893

Measured throughput 0.206 0.306 0.406 0.126

Predicted system throughput 0.095

Demand time 4.846 3.271 2.464

Measured response time 60.713 40.078 30.652 121.597

Predicted system response time 131.443

Measured throughput 0.306 0.206 0.406 0.120

Predicted system throughput 0.095

Demand time 3.271 4.846 2.464

Measured response time 40.501 60.660 30.652 100.725

Predicted system response time 131.813

 78

5.7.4 The Composition Rules of the Communication Pattern No. 12

 The communication pattern No. 12 is the sequential composition of two

asynchronous two-way invocation-based communication patterns.

 The composition rule for communication pattern No. 12 can be constructed based

on the basic communication patterns as: Component 1 ⊕ (Component 2 ⊕ Component 3),

where ⊕ denotes the asynchronous two-way communication pattern.

 Table 5.8 shows the experimental results of the communication pattern No. 12

with multi-threaded (4 threads) components as the participants. It can be seen from Table

5.8 that the predicted throughputs and response times based on the proposed composition

rules approximate the measured throughputs and response times with a good accuracy.

The errors in predicting the throughput and the response time are within 6.7% and 6.6%

respectively.

Table 5.8 Experiment Results of Communication Pattern No. 12 with Multi-Threaded

(4 Threads) Components as the Participants
 Component 1 Component 2 Component 3 Asyn Asyn

Measured throughput 0.406 0.306 0.206 0.193

Predicted system throughput 0.206

Demand time 2.464 3.271 4.845

Measured response time 30.032 40.078 60.783 76.613

Predicted system response time 72.253

Measured throughput 0.206 0.306 0.406 0.205

Predicted system throughput 0.206

Demand time 4.846 3.271 2.464

Measured response time 60.713 40.078 30.652 78.500

Predicted system response time 83.651

Measured throughput 0.306 0.206 0.406 0.197

Predicted system throughput 0.206

Demand time 3.271 4.846 2.464

Measured response time 40.501 60.660 30.652 77.652

Predicted system response time 77.056

 79

5.7.5 The Composition Rules of the Communication Pattern No. 13

 The communication pattern No. 13 is the sequential composition of a synchronous

two-way invocation and an asynchronous two-way invocation.

 The composition rule of the communication pattern No. 13 can be constructed

based on the basic communication pattern as: Component 1 ⊗ (Component 2 ⊕

Component 3), where ⊗ denotes the synchronous two-way communication pattern and ⊕

denotes the asynchronous two-way communication pattern.

 Table 5.9 shows the experimental results of the communication pattern No. 13

with multi-threaded (4 threads) components as the participants. It can be seen that the

throughputs and the response times predicted based on the proposed composition rules

are close to the measured throughputs and response times. The error in predicting the

throughput and the response time is within 11.5% and 11.7% respectively.

Table 5.9 Experiment Results of the Communication Pattern No. 13 with Multi-Threaded

(4 Threads) Components as the Participants
 Component 1 Component 2 Component 3 Syn Asyn

Measured throughput 0.406 0.306 0.206 0.127

Predicted system throughput 0.137

Demand time 2.464 3.271 4.845

Measured response time 30.032 40.078 60.783 110.273

Predicted system response time 97.357

Measured throughput 0.206 0.306 0.406 0.124

Predicted system throughput 0.123

Demand time 4.846 3.271 2.464

Measured response time 60.713 40.078 30.652 105.031

Predicted system response time 110.645

Measured throughput 0.306 0.206 0.406 0.139

Predicted system throughput 0.123

Demand time 3.271 4.846 2.464

Measured response time 40.501 60.660 30.652 112.017

Predicted system response time 111.015

 80

5.7.6 The Composition Rules of the Communication Pattern No. 14

 The communication pattern No. 14 is the sequential composition of an

asynchronous two-way invocation-based communication pattern and a synchronous two-

way invocation-based communication pattern.

 The composition rule for the communication pattern No. 14 can be constructed

based on the basic communication patterns as: Component 1 ⊕ (Component 2 ⊗

Component 3), where ⊕ denotes the asynchronous two-way communication pattern and

⊗ denotes the synchronous two-way communication pattern.

 Table 5.10 shows the experimental results of the communication pattern No. 14

with multi-threaded (4 threads) components as the participants. Based on the results from

Table 5.10, it can be seen that the predicted throughputs and response times using the

proposed composition rules are close to the measured throughputs and response times.

The errors in predicting the throughput and the response time are within 12.8% and

15.6% respectively.

Table 5.10 Experiment Results of the Communication Pattern No. 14 with Multi-

Threaded (4 Threads) Components as the Participants
 Component 1 Component 2 Component 3 Asyn Syn

Measured throughput 0.406 0.306 0.206 0.141

Predicted system throughput 0.123

Demand time 2.464 3.271 4.845

Measured response time 30.032 40.078 60.783 91.548

Predicted system response time 105.789

Measured throughput 0.206 0.306 0.406 0.190

Predicted system throughput 0.174

Demand time 4.846 3.271 2.464

Measured response time 60.713 40.078 30.652 94.212

Predicted system response time 80.422

Measured throughput 0.306 0.206 0.406 0.156

Predicted system throughput 0.137

Demand time 3.271 4.846 2.464

Measured response time 40.501 60.660 30.652 96.756

Predicted system response time 97.855

 81

5.7.7 The Composition Rules of the Communication Pattern No. 17

 The communication pattern No. 17 is the partial sequential composition of two

synchronous two-way invocation-based communication patterns.

 The composition rules for the communication pattern No. 17 can be constructed

based on the basic communication patterns as: (Component 1 ⊗ Component 2) ⊗

Component 3, where ⊗ denotes the synchronous two-way communication pattern.

 Table 5.11 shows the experimental results of the communication pattern No. 17

with multi-threaded (4 threads) components as the participants. The error in predicting

the throughput and response time using the proposed composition rules are with in 26.3%

and 41.4% respectively. Because the composition rules do not consider the asynchronous

degree of a communication pattern, the predicted throughputs and response times are not

as good as expected.

Table 5.11 Experiment Results of the Communication Pattern No. 17 with Multi-

Threaded (4 Threads) Components as the Participants

 Component 1 Component 2 Component 3 Syn Syn

Measured throughput 0.406 0.306 0.206 0.114

Predicted system throughput 0.095

Demand time 2.464 3.271 4.845

Measured response time 30.032 40.078 60.783 114.278

Predicted system response time 130.893

Measured throughput 0.206 0.306 0.406 0.111

Predicted system throughput 0.095

Demand time 4.846 3.271 2.464

Measured response time 60.713 40.078 30.652 127.151

Predicted system response time 131.443

Measured throughput 0.306 0.206 0.406 0.129

Predicted system throughput 0.095

Demand time 3.271 4.846 2.464

Measured response time 40.501 60.660 30.652 93.202

Predicted system response time 131.813

 82

5.7.8 The Composition Rules of the Communication Pattern No. 18

 The communication pattern No. 18 is the partial sequential composition of two

asynchronous two-way invocation-based communication patterns.

 The composition rule for the communication pattern No. 18 can be constructed

based on the basic communication patterns as: (Component 1 ⊕ Component 2) ⊕

Component 3, where ⊕ denotes the asynchronous two-way communication pattern.

 Table 5.12 shows the experimental results of the communication pattern No. 18

with multi-threaded (4 threads) components as the participants. It can be seen that the

predicted throughputs and response times based on the proposed composition rules

provide a good accuracy in approximating the measured throughputs and response times.

The errors in predicting the throughput and the response time are within 11.4% and

12.9% respectively.

Table 5.12 Experiment Results of the Communication Pattern No. 18 with Multi-
Threaded (4 Threads) Components as the Participants

 Component 1 Component 2 Component 3 Asyn Asyn

Measured throughput 0.406 0.306 0.206 0.185

Predicted system throughput 0.206

Demand time 2.464 3.271 4.845

Measured response time 30.032 40.078 60.783 80.057

Predicted system response time 72.253

Measured throughput 0.206 0.306 0.406 0.205

Predicted system throughput 0.206

Demand time 4.846 3.271 2.464

Measured response time 60.713 40.078 30.652 74.061

Predicted system response time 83.651

Measured throughput 0.306 0.206 0.406 0.191

Predicted system throughput 0.206

Demand time 3.271 4.846 2.464

Measured response time 40.501 60.660 30.652 69.651

Predicted system response time 77.056

 83

5.7.9 The Composition Rules of the Communication Pattern No. 19

 The communication pattern No. 19 is the partial sequential composition of a

synchronous two-way invocation-based communication pattern and an asynchronous

two-way invocation-based communication pattern.

 The composition rule for the communication pattern No. 19 can be constructed

based on the basic communication patterns as: (Component 1 ⊗ Component 2) ⊕

Component 3, where ⊗ denotes the synchronous two-way communication pattern and ⊕

denotes the asynchronous two-way communication pattern.

 Table 5.13 shows the experimental results of the communication pattern No. 19

with multi-threaded (4 threads) components as the participants. It can be seen from Table

5.13 that the predicted throughputs and response times based on the proposed

composition rules are close to the measured throughputs and response times for most of

the cases. The errors in predicting the throughput and the response time are within 18.5%

and 16.4%.

Table 5.13 Experiment Results of the Communication Pattern No.19 with Multi-
Threaded (4 Threads) Components as the Participants

 Component 1 Component 2 Component 3 Syn Asyn

Measured throughput 0.406 0.306 0.206 0.190

Predicted system throughput 0.174

Demand time 2.464 3.271 4.845

Measured response time 30.032 40.078 60.783 92.967

Predicted system response time 89.490

Measured throughput 0.206 0.306 0.406 0.146

Predicted system throughput 0.123

Demand time 4.846 3.271 2.464

Measured response time 60.713 40.078 30.652 115.816

Predicted system response time 110.647

Measured throughput 0.306 0.206 0.406 0.151

Predicted system throughput 0.123

Demand time 3.271 4.846 2.464

Measured response time 40.501 60.660 30.652 132.805

Predicted system response time 111.017

 84

5.7.10 The Composition Rules of the Communication Pattern No. 20

 The communication pattern No. 20 is the partial sequential composition of an

asynchronous two-way invocation-based communication pattern and a synchronous two-

way invocation-based communication pattern.

 The composition rule for the communication pattern No. 20 can be constructed

based on the basic communication patterns as: Component 2 ⊕ (Component 1 ⊗

Component 3) for throughput, Component 1 ⊗ Component 3 for response time, where ⊕

denotes the asynchronous two-way communication pattern and ⊗ denotes the

synchronous two-way communication pattern.

 Table 5.13 shows the experimental results of the communication pattern No. 20

with multi-threaded (4 threads) components as the participants. It can be seen from Table

5.13 that the predicted throughput and response time approximate the measured

throughput and response time with errors within 22.1% and 8.1% respectively.

Table 5.14 Experiment Results of the Communication Pattern No. 20 with Multi-
Threaded (4 Threads) Components as the Participants

 Component 1 Component 2 Component 3 Asyn Syn

Measured throughput 0.406 0.306 0.206 0.176

Predicted system throughput 0.137

Demand time 2.464 3.271 4.845

Measured response time 30.032 40.078 60.783 90.174

Predicted system response time 90.815

Measured throughput 0.206 0.306 0.406 0.171

Predicted system throughput 0.137

Demand time 4.846 3.271 2.464

Measured response time 60.713 40.078 30.652 84.516

Predicted system response time 91.365

Measured throughput 0.306 0.206 0.406 0.192

Predicted system throughput 0.174

Demand time 3.271 4.846 2.464

Measured response time 40.501 60.660 30.652 70.359

Predicted system response time 71.153

 85

5.8 Summary
 In this chapter, the effect of the inter-component communication patterns on the

system composition and decomposition are studied. The major communication patterns

are identified and the composition rules of the throughput and the turn-around time for

some of these communication patterns are proposed. The communication patterns and the

invocation order of components affect the throughput and the response time of a

composed system. The proposed composition rules can provide a rough prediction of the

throughput and the response time of a composed system. In the next chapter, the network

effect on the system composition and decomposition are investigated.

 86

6. EFFECT OF NETWORKS ON SYSTEM COMPOSITION AND DECOMPOSITION

6.1 Introduction

Today’s distributed systems are highly dependent on networking and information

infrastructure. The network plays an important role in distributed systems, especially

from application domains, such as data mining, e-commerce, and multimedia, which are

bandwidth hungry, time sensitive, and mission critical. In such applications, the network

could be the bottleneck of the system. In distributed real-time systems, due to the tight

real-time constraint, the network performance need to be highly predictable in order to

meet the hard/software time deadline.

 The proposed composition and decomposition rules did not incorporate the

network components. In this chapter, a preliminary approach is proposed to consider the

network effect in system composition and decomposition.

6.2 Network Component and Its QoS Parameters

 In a distributed system, two distributed components are connected by a network

component as shown in the Figure 6.1. In general, a network component consists of the

following subcomponents along the communication path: the network stack at the end

hosts, the switches/routers, and the links.

Figure 6.1 The Network Component in a Distributed System

Component

Component Network

Component

 87

Different parameters can be used to gauge the performance of networks. The

well-known network QoS parameters consist of bandwidth, end-to-end delay, packet loss,

and jitter.

1) End-to-end delay (ms):

End-to-end delay is a function of the number of hops a packet makes. The

network end-to end delay consists of the following components: end system delay and

network delay. The end system delay includes: processing delay at the sending end

(fixed), packetization delay at the sending end (fixed, negligible), depacketization at the

receiving end (fixed, negligible), processing delay at the receiving end (fixed), and jitter

buffer delay at the receiving end (fixed). Network delay includes propagation delay at

switch/router (fixed, = distance / speed of light), queuing delay at switch/router

(variable), and transmit delay at switch/router (fixed, = packet size / bandwidth). The

network end-to-end delay can be written as:

D(network) = Dsender(processing) + D(queuing) + D(transmit) + D(propagation) +

D(jitter buffer) + Dreceiver(processing) (6.1)

For enterprise terrestrial networks, queuing and transmission delays are often the

dominant components of the network delay. In satellite networks, the propagation delay

can dominate.

2) Packet loss (%):

There are two reasons for the packet loss: 1) Queue overflows in routers or end-

user machines, and 2) Bit errors. The probability of bit errors is very low on most

networks. Therefore it is assumed that loss is induced by congestion rather than by bit

errors. Buffer overflow can happen on a congested link or at the network interface of a

workstation. When too many packets are simultaneously sent to a router, it simply

discards some packets. The network end-to-end probability of packet loss can be

determined based on the nodes in the end-to-end path [38]:

(1 - PLnetwork) = (1 - PL1) *…*(1 - PLi)* (1 - PLn), (6.2)

 88

where PLnetwork denotes the packet loss of the network, PLi (i=1, 2, …, n) denotes the

packet loss at the node i.

3) Jitter (ms):

If the network is congested, arrival times for the packets will vary. The easiest

way to remove jitter is to hold the packets in a buffer, the "jitter buffer", until the slowest

packet arrives and then to transmit them in the correct sequence with an equal inter-

packet timing. This method solves the problem of jitter but also introduces additional

delays into the end-to-end connection. It is therefore critical to perform a balancing act

between jitter and delay. The end-to-end network jitter can be determined based on the

nodes in the end-to-end path [39]:

Jnetwork =
n

JJJ ni
222

1 +++
 , (6.3)

where Jnetwork denotes the network end-to-end jitter, Ji (i=1,2,…,n) denotes the jitter at the

node i.

6.3 Mapping Application QoS to Network QoS

The system QoS mapping is to translate the application level QoS requirements

into constraints at the network level. The application level QoS parameters are

meaningful to applications, while the network level QoS parameters are meaningful to

the network. The question is how to map the application level QoS to the network level

QoS, or vice versa. For example, in a streaming video application, the frame rate and the

resolution are important QoS parameters at the application level, which are determined

by the bandwidth at the network level. How to map between them is a challenging

research problem.

 89

6.4 Class of Services

 The current network infrastructure can provide different classes of services, such

as best effort, differentiated service, and guaranteed service. On the other hand, the

applications from different domains impose different service requirements on the

network.

6.4.1 QoS Levels Provided by Networks

 Current network QoS services can be divided into three levels: best effort service,

differentiated service, and guaranteed service. The best effort model does not guarantee a

traffic delivery. A differentiated service groups the traffic into classes and a relative

service priority exists among these classes. A differentiated service can provide a

qualitative or statistical guaranteed service. A guaranteed service allocates the network

resources to ensure specific service requirements. A deterministic bound can be specified

for QoS with guaranteed service.

6.4.2 Network QoS Requirements Based on Class of Services

The network QoS parameters can be specified based on the class of service, as

shown in Table 6.1 [37]. Four different QoS classes are defined and basic characteristics

for each class are described. Each class of service corresponds to a certain range of QoS

values and different applications can be mapped to different classes of services. In Table

6.1, IPTD denotes IP packet transfer delay; IPDV denotes IP packet delay variation;

IPLR denotes IP packet loss ratio; IPER denotes IP packet error ratio; SPR denotes

spurious IP packet rate; “U” means “unspecified” or “unbound”.

 90

Table 6.1 Provisional IP QoS Class Definitions and Network Performance Objectives
 QoS Classes

Nature of the
network

performance
objective

Default
objectives

Class 0
Class 1

(Interactive)

Class 2
(Non-

Interactive)

Class 3
(U class)

IPTD
Upper bound
on the mean

IPTD

No default

150 ms 400ms 1 sec U

IPDV

Upper bound
on the 1-10-3
quantile of

IPTD minus
the minimum

IPTD

No default 50 ms 50ms 1 sec U

IPLR
Upper bound
on the packet

loss ratio
No default 1*10-3 1*10-3 1*10-3 U

IPER Upper bound 1*10-4 Default Default Default U

SPR Upper Bound
Default
TBD

Default Default default U

6.4.3 Network QoS Requirements Based on Application Domains

 Network QoS requirements can also be specified based on the application

domains. Each application domain requires a different level of the network QoS services.

Table 6.2 shows the expected network QoS for conversational/real-time services. Table

6.3 shows the expected network QoS for streaming service. Table 6.4 shows the expected

network QoS for interactive service [37]. In Table 6.2, 6.3 and 6.4, FER means frame

erasure rates.

 91

Table 6.2 End-User Performance Expectations - Conversational/Real-time Services
Medium Application Degree of

symmetry
Data rate Key performance parameters and

target values

 One-way Delay Delay
Variation

Information
loss

Audio Conversation
at Narrow-

band speech

Two-way [4-13] kbit/s <150 msec
preferred

<400 msec limit

< 1 msec < 3% FER

Audio Conversation
at Wideband

speech

Two-way [4-13] kbit/s
[10-64]
kbit/s

<150 msec
preferred

<400 msec limit

< 1 msec < 3% FER

Video Videophone Two-way [32-384]
kbit/s

< 150 msec
preferred

<400 msec limit
Lip-synch:
< 100 msec

 < 1% FER

Data Telemetry
- two-way

control

Two-way [<28.8]
kbit/s

< 250 msec N.A Zero

Data Interactive
games

Two-way [< 1] KB < 250 msec N.A Zero

Data Telnet Two-way
(asymmetr

ic)

[< 1] KB < 250 msec N.A Zero

Table 6.3 End-User Performance Expectations - Streaming Services

Medium Application
Degree of
symmetry

Data rate
Key performance parameters and

 target values

 One-way Delay
Delay

Variation
Information

loss

Audio
High quality

streaming
audio

Primarily
one-way

[32-128]
kbit/s

< 10 sec < 1 msec < 1% FER

Video One-way One-way
[32-384]

kbit/s
< 10 sec < 1% FER

Data

Bulk data
transfer/retriev

al

Primarily
one-way

 < 10 sec N.A Zero

Data

Still image One-way < 10 sec N.A Zero

Data
Telemetry

- monitoring
One-way [<28.8] kbit/s < 10 sec N.A Zero

 92

Table 6.4 End-User Performance Expectations - Interactive Services

Medium Application
Degree of
symmetry

Data rate
Key performance parameters and

target values

 One-way Delay
Delay

Variation
Information

loss

Audio
Voice

messaging
Primarily
one-way

[4-13]
kbit/s

< 1 sec for
playback

< 2 sec for record
< 1 msec < 3% FER

Data
Web

browsing
- HTML

Primarily
one-way

 < 4 sec/page N.A Zero

Data

Transaction
services -

high priority
e.g.

e-commerce,
ATM

Two-way < 4 sec N.A Zero

Data
E-mail
(server
access)

Primarily
One-way

 < 4 sec N.A Zero

6.5 Specification of Network Component

 To incorporate the network effect into the UniFrame approach, the network

component is considered as a special component in a distributed system. It is the

connector between two distributed components in the system. The following is the

preliminary format of the specification of the network component:

♦Component type: connector

♦Application domain:

♦Functionality: transmit media/bulk data

♦Service level: best effort/differentiated server/guaranteed service

♦QoS

• Bandwidth (KB/s):

• Delay (ms):

• Jitter (ms):

• Packet loss (%):

 93

6.6 Incorporation of Network Component into System Composition and Decomposition

 In system composition and decomposition, the network component between two

distributed components cannot be determined until the two distributed components are

determined. In the system decomposition, the properties of the network component are

initially assumed based on the application domains. When the system components are

determined after the search and selection process, the network component between each

two distributed components is determined. System composition then validates the system

as a whole including network components.

6.7 Summary

 The network component is an essential part in component-based distributed

systems. The difficulties to incorporate the network component into the system

composition and decomposition approach are: 1) a mapping from the application QoS to

network QoS is needed, which is non-trivial, 2) the network component sometimes is not

under control of the system integrators. A preliminary study on how to incorporate the

network component into the composition and decomposition approach is addressed in

this chapter. In the next chapter, effect of the system execution environment on system

composition and decomposition is studied.

 94

7. EFFECT OF SYSTEM EXECUTION ENVIRONMENT
ON SYSTEM COMPOSITION AND DECOMPOSITION

7.1 Introduction

A component-based distributed system executes in an environment, which has the

following meanings:

♦ The hardware platforms: A component-based distributed system executes on a

hardware platform such as handheld, desktop.

♦ The system resources: These resources perform the computation and communication.

♦ The security policy: The underlying execution environment may have its own security

policy.

♦ The location of device: A component-based distributed system may sense the location

of its components and provide the user mobility.

♦ Entities/actors a system interacts with: A component-based distributed system may

need to collaborate with outside entities/actors to achieve a certain task.

The execution environment of component-based systems may experience a major

change, for example, the change of hardware platform from desktop to handheld. It may

undergo fine-grained run-time variations, for example, drops of network bandwidth,

decreasing battery power, change of access control for security policy, and change of

location when the user moves from one place to another place. The following describes

three applications where the execution environment is important.

In distributed mobile computing systems, the changes of their execution

environment are particularly substantially and frequently because of the intrinsic

characteristics that make their execution environment susceptible to great variations such

as high bandwidth variability, variable error rates, eventual disconnections, hardware and

software heterogeneity, variable resource availability and user mobility.

 95

In distributed mobile agent-based systems, the mobile agent can move from one

execution environment to another execution environment. The new execution

environment may be totally different in terms of the security policy, availability of

resources.

The grid applications are characterized by the dynamic nature of their execution

environment: the joining and leaving of resources. Applications that execute on

computational grids can be susceptible to large changes in performance due to the

inherently dynamic nature of grid resources.

In [27], the effect of the environment on the QoS of software components is

studied. The studied environment variables include the CPU speed, the size of memory,

and the execution priority of the components. It stated that the fact that the environment

variables can affect the QoS of a software component implies that any QoS associated

with a software component would not necessarily hold true in foreign environments.

Hence, it becomes critical to account for the effect of the execution environment on the

QoS of software components.

In extending the work in [27], the effect of the execution environment of

component-based distributed systems on the QoS of the entire integrated system is

investigated in this chapter.

7.2 The Hardware Platforms of the Execution Environment

Driven by the system evolution and software reuse, a component-based

distributed system may be deployed across different hardware platforms: such as set top

boxes, PDAs, cell phones, Web pads, and desktops. Different hardware platforms have

different capabilities in terms of the computation power, the available memory, the

bandwidth of connections and the power.

 96

7.3 The Security Policy of the Execution Environment

The underlying execution environment of a component-based distributed system

has its own security consideration and settings. Different execution environments may

have different levels of security. For example, the Windows 9X and Windows NT/2000

have different security policies and Windows 9X is more vulnerable than Windows

NT/2000. The change of the security policy of the underlying execution environment can

affect the security of the application running on it. In another words, the security of a

component-based distributed system is dependent on the security of the underlying

execution environment.

7.4 The User Mobility of the Execution Environment

Today mobile devices are an integrated part of the execution environment of

many distributed applications. This fact has brought up a new application domain called

mobile computing, which offers information access anywhere and anytime but also

introduces new problems special to this application area: the execution environment is

susceptible to great variations as hand-held devices move about in the physical world,

such as frequent disconnections and low bandwidth. The available hardware resources

such as bandwidth, memory, and battery life can fluctuate quickly on such devices.

7.5 The System Resources of the Execution Environment

A system resource is an entity that is shared by different applications and might

cause contention. System resources are classified into software/hardware resources, time

shared/space shared resources, and active/passive resources.

The hardware resources include the CPU time, the memory, the I/O, the network

I/O, and the power. The software resources include blocks, shared pools, locks,

semaphores, buffers, and file descriptors. The software resources also consume hardware

resources.

 97

 Time-shared resources can only be used by one client exclusively at each instant.

An example of time-shared resources is the CPU time. Space-shared resources, in

contrast, are structured aggregations of a set of identical elements. They are subject to

sharing mainly on the basis of the simultaneous access to possibly overlapping subsets.

The physical memory is an example of space-shared resources.

Active resources represent an entity that performs the work to accomplish a job.

The essential attribute of the entity is the rate at which it does the work. CPU is an

example of an active resource. Passive resources represent something needed to do a job,

but do not accomplish the work. The essential attribute of the entity is capacity or

amount of the resource. Physical memory is an example of a passive resource.

Different standalone components/applications compete for the available system

resources in a machine. A resource contention occurs when the demand exceeds or

become close to the capacity of that resource. The response time of a request can be

broken into three parts. The first part is the time spent to access software resources that

are mutually exclusive, such as a critical section. The second part is the time spent in

waiting to use the hardware resources. The third part is the time the hardware resources

spend in serving the request. In the case of resource contention, the first two parts of the

response time of a request would increase. Excessive resource contention can give rise to

an increased response time.

 The performance of an application is dominated by the effects of the resource

contention. Since the response time equals the service time plus the wait time, the

performance can be improved by reducing either of these. The service time for a task may

stay the same, but the wait time increases as contention increases. Resources such as

CPUs, memory, I/O capacity, and network bandwidth are key to reducing the service

time. Adding extra resources make a higher throughput possible and facilitate a faster

response time.

 98

7.6 Environment Failure

A distributed system cannot work properly if its underlying environment

encounters a failure. Analysis of the effect of the environment failure on a distributed

application is important in domains such as real-time and embedded domains.

The environment failure can be the failure of the system resources or failure of the

outside entities/actors. The failures of system resources include processor failure,

memory failure, disk failure and link failure. The failures of the outside entities/actors

include the failure of the external entities and invalid behavior of external actors.

Each constituent of the execution environment of a distributed system could be a

potential point of failure. To analyze the system failure model, the failure probability and

failure duration of each environment constituent needs to be known. To calculate the

system reliability, the environment constituents become nodes in a system fault tree

7.7 Environment-Sensitive Component

 The response of a component may or may not be sensitive to the change of the

system execution environment. The environment sensitive components are those that can

be significantly affected by the change of the environment. For example, a component

running on a mobile device is sensitive to the user movement in the environment. The

network bound streaming video component is sensitive to the variation of the network

bandwidth. The environment sensitive components need more precautions during system

integration. Some environment-sensitive components are described in the following

subsections.

7.7.1 Components in Resource-Constrained Environment

In the area of real-time/embedded systems, such as smart cards, hand-held

devices, Internet appliance, set top boxes, sensor devices, cell phones, Web pads, etc., the

execution environment of the system is resource-restricted due to their inherent scarcity

 99

of computing power, memory space and hostile conditions, and the constraints on the

battery capacity, the size and cost of the device, and the bandwidth consumptions.

The components in a resource-constrained environment are sensitive to the

change of the environment. For example, mobile devices may experience network

disconnection as the user moves from one place to another place. In real-time and

embedded systems, there is a tight constraint on the time taken to respond to the external

interactions. Any resource contentions can cause unpredictable delay, which is

undesirable.

7.7.2 Computation Bound Components

The performance of a computation-bound component is mainly restricted by the

available computational resources. CPU-bound and memory-bound are two examples of

computation-bound components.

A CPU-bound component performs CPU-intensive computation and uses up most

of the available processor cycles to perform a computation. For example, components

sorting an array, multiplying matrices, or doing cryptographic computation are CPU-

bound.

A memory-bounded component performs memory-intensive computation, making

a significant number of memory accesses. Examples are a component applies a data

mining algorithm on large dataset, or a component does video or audio compression.

7.7.3 I/O Bound Components

An I/O bound component is normally classified as a disk I/O bound or a network

I/O bound component.

Disk I/O bound components performs a lot of reading and writing to the hard

disk. The performance of the component is significantly limited by the speed of the disk.

For example, components that perform OLTP (On-Line Transaction Processing) or video

processing are disk I/O bound.

 100

The performance of a network-bound component is mainly restricted by the

available network resource, the network bandwidth. For example, components perform

video streaming are network I/O bound.

7.8 Analysis of the Environment Effect on System Non-Functional Properties

The variation of the execution environment of distributed systems has an effect on

the properties of the individual components. For example, as the computation resource

decreases, the computation of a component in that environment slows down. To analyze

the overall effect of the environment at the system level, the following procedures are

proposed:

1) Determine the nature of the execution environment. Applications running on different

execution environments may experience different kind of environment changes. This

includes the types of the environment changes, the significance of the environment

changes, and the frequency of the environment changes.

2) Identify the environment sensitive components. The variation of the environment of a

distributed application may affect the non-functional properties of each component in the

system, but the significance of this effect can differ greatly from one component to

another. With this in mind, it is possible to analyze the environment’s effect on the

system non-functional properties by taking account of the environment sensitive

components. The environment sensitive components can be identified based on its role in

the system. For example, some components are computation-oriented, some components

are communication-oriented, some components are mobile-oriented and some

components are authentication-oriented. A component in a certain role may be sensitive

to a certain change of the execution environment.

3) Based on the information collected in procedures 1) and 2), evaluate the environment

effect on the system non-functional properties and provide recommendations.

 101

7.9 Summary

 In summary, the execution environment of a component-based distributed system

undergoes various changes during its lifetime. These environment changes can affect the

system non-functional properties of the distributed application, such as performance,

reliability, security, and so on. In this chapter, a preliminary approach is proposed to

consider the effect of the execution environment of a distributed system on system

composition and decomposition. This approach is based on the nature of the execution

environment and the environment sensitive components.

 102

8. CONCLUSIONS AND FUTURE WORKS

This thesis addresses the composition and decomposition of non-functional

properties in component-based distributed systems. The major conclusions are made in

the section 8.1 and some future works are indicated in the section 8.2.

8.1 Conclusions

A sound composition and decomposition model of non-functional properties is

important for the success of component-based software development. Based on this

study, the following conclusion can be made:

1) Non-functional properties are abstract, informal and interact with functional properties.

Even though a rigorous mathematical model for composition and decomposition is

crucially needed, the understanding of the composition and decomposition mechanisms

of the non-functional properties in component-based development is still in its early

stage.

2) Due to the diversity of the non-functional properties and the distinct features of

individual non-functional properties, it is difficult to create a general composition and

decomposition rule for those properties. The composition and decomposition rules are

specific to individual properties.

3) A non-functional property may be applicable to different domains. The domain

independent composition and decomposition rules can be reused in different domains, but

they are normally weak. The domain specific composition and decomposition rules are

strong, but specific to an individual domain. There is a tradeoff between reusability and

accuracy.

 103

4) Different inter-component communication patterns are supported by current

component models. A component may use different communication patterns to interact

with different components or the same component at different times. The inter-

component communication patterns can affect the composition and decomposition of

non-functional properties. There is a need of the composition and decomposition rules of

non-functional properties for individual communication patterns.

5) The network is an essential part of a distributed system. It is needed to incorporate the

network into the composition and decomposition of non-functional properties.

6) In order to develop a dependable software system, the system execution environment

has to be considered during the system development. Due to its dynamic characteristics,

capturing the environment’s effects on the system properties is difficult.

 The contributions of this study are:

1) Propose the composition and decomposition rules of non-functional properties and

divide them into domain independent rules and domain specific rules.

2) Identify the inter-component communication patterns and propose the composition

rules of throughput and response time for some of these communication patterns, and

validate these rules via experimental data.

3) Consider the network as a special component in UniFrame approach. The specification

of network component, the incorporation of network component into the UniFrame

approach is preliminary studied.

4) Identify the key factors of system execution environment. Propose the approach to

address the effect of system execution environment on non-functional properties. The

approach focuses on the nature of the execution environment and the environment

sensitive analysis.

8.2 Future Works

The future works of this study are:

1) Formalize the composition and decomposition rules. The formal approach is rigorous,

unambiguous and easy to be automated by use of tools.

 104

2) Non-function properties are constraints on functional properties. Non-functional

properties and functional properties cannot be handled separately. In this study, only the

non-functional properties are addressed. It is important to extend this approach to address

not only non-functional properties, but also the corresponding functional properties.

3) This approach considers only the product quality. It is necessary to define the process

quality of the UniFrame approach and incorporate it into the composition and

decomposition of non-function properties.

4) Further investigate the integration of network component with the system composition

and decomposition approach. This includes: map the application QoS to network QoS

and solve the problems such as the network component is unknown in system

decomposition and the network component maybe not under control in system

composition.

5) Experiment with the system execution environment and quantify its effect on system

composition and decomposition.

 105

REFERENCES

[1] P. Brereton and D. Budgen. “Component-Based Systems: A Classification of Issues,”
IEEE Computer, Vol. 33, No. 11, November 2000, pp. 54-62.

[2] I. Sommerville. “Software Engineering,” Addison-Wesley, 2000, ISBN:
020139815X.

[3] J. A. Stafford. “PACC – Bridging the Gap Between Software Architecture and
Software Components,” http://www-2.cs.cmu.edu/afs/cs/academic/class/17655-s02/www
/lectures/25.c-b.systems.pdf.

[4] G. T. Heineman and W. T. Councill. “Component-Based Software Engineering:
Putting the Pieces Together,” Addison Wesley, 2001, ISBN: 0201704854.

[5] JavaTM 2 Platform Enterprise Edition: http://java.sun.com/j2ee.

[6] CORBA, OMG: http://www.corba.org.

[7] .NET, http://www.microsoft.com/net/.

[8] Web Services, http://www.w3.org/2002/ws/.

[9] D. Garlan and D. Perry. “Introduction to the Special Issue on Software Architecture.
Guest Editorial,” IEEE Transaction on Software Engineering, Vol. 21, No. 4, April 1995,
pp. 269-274.

[10] Inter-Agency Working Group on Information Technology Research and
Development. “High Confidence Software and Systems Research Needs,” January 2001.

[11] UML, http://www.omg.org.

[12] N. S. Rosa, P. R. R. Cunha and G. R. R. Justo. “Process NFL: A Language for
Describing Non-Functional Properties,” Proceedings of the 35th Annual Hawaii
International Conference on System Sciences, 2002.

 106

[13] M. Abadi and L. Lamport. “Composing Specifications,” ACM Transactions on
Programming Languages and Systems, Vol. 15, No. 1, January 1993, pp. 73-132.

[14] K. M. Chandy and B. Sanders. “Reasoning About Program Composition,” Technical
Report 96-035, Department of Computer and Information Science and Engineering,
University of Florida, 1996.

[15] M. Charpentier and K. M. Chandy. “Examples of Program Composition Illustrating
the Use of Universal Properties,” International Workshop on Formal Methods for Parallel
Programming: Theory and Applications (FMPPTA’99), Springer-Verlag Lecture Notes
in Computer Science, Vol. 1586, April 1999, pp. 1215-1227.

[16] M. Charpentier and K. M. Chandy. “Towards a Compositional Approach to the
Design and Verification of Distributed Systems,” World Congress on Formal Methods in
the Development of Computing Systems (FM’99), Springer-Verlag Lecture Notes in
Computer Science, Vol. 1708, September 1999, pp. 570-589.

[17] M. Charpentier and K. M. Chandy. “Theorem About Composition,” International
Conference on Mathematics of Program Construction, Springer-Verlag Lecture Notes in
Computer Science, Vol. 1837, July 2000, pp. 167-186.

[18] J. Stafford and K. Wallnau. “Predicting Feature Interactions in Component-based
Systems,” In proceedings of the Workshop on Feather Interaction of Composed Systems,
in Conjunction with the 15th European Conference on Object-Oriented Programming,
Budapest, Hungary, June 2001.

[19] R. Kazman, G. Abowd, L. Bass, and P. Clements. “Scenario-Based Analysis of
Software Architecture,” IEEE Software, Vol. 13, No. 6, November 1996, pp. 47-55.

[20] M. Klein and R. Kazman. “Attribute-Based Architectural Styles,” CMU/SEI-99-TR-
022, 1999.

[21] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere. “The
Architecture Tradeoff Analysis Method,” Fourth International Conference on
Engineering Complex Computer Systems, August 1998, pp. 68-78.

[22] N. S. Rosa, G. R. R. Justo and P. R. F. Cunha. “A Framework for Building Non-
Functional Software Architectures,” 16th ACM Symposium on Applied Computing,
March 2001, pp. 141-147.

[23] C. U. Smith and L. G. Williams. “Performance and Scalability of Distributed
Software Architectures: An SPE Approach,” Parallel and Distributed Computing
Practices, Vol. 3, No. 4, 2002.

 107

[24] L. G. Williams, and C. U. Smith. “PASA: A Method for the Performance
Assessment of Software Architectures,” Proc. 3rd Int. Workshop on Software and
Performance, Rome, 2002.

[25] D. Petriu and M. Woodside. “Software Performance Models from System Scenarios
in Use Case Maps,” Proc. 12 Int. Conf. on Modeling Tools and Techniques for Computer
and Communication System Performance Evaluation (Performance TOOLS 2002),
London, April 2002.

[26] R. Raje, M. Auguston, B. Bryant, A. Olson, and C. Burt. “A Unified Approach for
the Integration of Distributed Heterogeneous Software Components,” Proceedings of the
2001 Monterey Workshop (Sponsored by DARPA, ONR, ARO and AFOSR), Monterey,
California, 2001, pp. 109-119.

[27] G. J. Brahnmath. “The Uniframe Quality of Service Framework,” M. S. Thesis,
Department of Computer & Information Science, Indiana University Purdue University
Indianapolis, December 2002.

[28] B. R. Bryant, B. S. Lee. “Two-Level Grammar as an Object-Oriented Requirements
Specification Language,” Proceedings (on CD-ROM -- 10 Pages) of the 35th Hawaii
International Conference on System Sciences, Hawaii, 2002.

[29] N. N. Siram. “An Architecture for Discovery of Heterogeneous Software
Components,” M. S. Thesis, Department of Computer & Information Science, Indiana
University Purdue University Indianapolis, March, 2002.

[30] G. Brahnmath, R. R. Raje, A. Olson, B. Bryant, M. Auguston, and C. Burt. “A
Quality of Service Catalog for Software Components,” The Proceedings of the
Southeastern Software Engineering Conference, Huntsville, Alabama, April 2002, pp.
513-520.

[31] M. Auguston. “A Program Behavior Model Based On Event Grammar and It’s
Application for Debugging Automation,” In the Proceedings of the 2nd International
Workshop on Automated and Algorithmic Debugging, AADEBUG'95, Saint-Malo,
France, May 1995, pp. 277-291.

[32] Z. Huang, R. Raje, A. Olson, B. Bryant, M. Auguston, C. Burt, and C. Sun.
“System-Level Generative Programming of Unified Approach Based on UMM for the
Integration of Distributed Software Components,” Proceedings of the IEEE Fifth
International Conference on Algorithms and Architectures for Parallel Processing,
Beijing, China, October 2002, pp. 136-142.

[33] E. Lycklama. “Detecting, Diagnosing, and Overcoming the Five Most Common
J2EE Application Performance Obstacles,” Web Services Edge, June 2002,
http://www.sitraka.com/software/media/WebServicesEdge_June2002.ppt.

 108

[34] N. G. Pryce. “Component Interaction in Distributed Systems,” PhD dissertation,
Department of Computing, Imperial College of Science, Technology, and Medicine,
University of London, January 2000.

[35] V. S. W. Eide, F. Eliassen, and O. Lysne. “Supporting Distributed Processing of
Time-Based Media Streams,” The 3rd International Symposium on Distributed Objects
and Applications (DOA’01), September 2001, pp. 281-288.

[36] D. Gross, and C. M. Haris. “Fundamentals of Queuing Theory,” Wiley-Interscience,
1998, ISBN: 0471170836.

[37] The Telecommunication Technology Committee (TTC), Working Group 6-5 SWG4,
“The Investigation Report of Major Standardization Activities About QoS of IP Services,
Revision1,” http://www.aptsec.org/astap/meetings/forum2001/fifth-astap/documents/
ASTAP01-FR05-PL-24_FWA_PR-attachment3.doc, October 2001.

[38] I. Grgic and C. Hatch. “Inter-Operator IP QoS Framework - ToIP and UMTS Case
Studies, Review of Existing IP QoS Activities and Extension of P1008 Findings,”
http://www.eurescom.de/~pub/deliverables/documents/P1100-series/P1103/TI1/p1103-
ti1.pdf, August 2001.

[39] G. V. Bochmann and A. Hafid. “Some Principles for Quality of Service
Management. Distributed Systems Engineering,” Special Issue on Quality of Service,
Vol. 4, No. 1, March 1997, pp. 16-27.

